Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/15/10.1063/1.4871197
1.
1. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).
http://dx.doi.org/10.1063/1.3688435
2.
2. H. Waki, H. Igarashi, and T. Honma, IEEE Trans. Magn. 42(4), 847 (2006).
http://dx.doi.org/10.1109/TMAG.2006.872480
3.
3. C. Cyr, P. Viarouge, S. Clénet, and J. Cros, IEEE Trans. Magn. 45(3), 1178 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2012544
4.
4. O. Bottauscio, M. Chiampi, and A. Manzin, IEEE Trans. Magn. 45(10), 3946 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2023873
5.
5. I. Niyonzima, R. V. Sabariego, P. Dular, and C. Geuzaine, IEEE Trans. Magn. 48(2), 587 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2174210
6.
6. A. Bordianu, O. de la Barrière, O. Bottauscio, M. Chiampi, and A. Manzin, IEEE Trans. Magn. 48(4), 1537 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2172927
7.
7. G. Wasselynck, D. Trichet, and J. Fouladgar, IEEE Trans. Magn. 49(5), 1825 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2241039
8.
8. O. Ouchetto, H. Ouchetto, S. Zouhdi, and A. Sekkaki, IEEE Trans. Antennas Propag. 61(8), 4214 (2013).
http://dx.doi.org/10.1109/TAP.2013.2262663
9.
9. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Electromagnetic Waves Series, 1999), p. 47.
10.
10. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002).
11.
11. E. F. Kuester and C. L. Holloway, IEEE Trans. Microw. Theory Techn. 38(11), 1752 (1990).
http://dx.doi.org/10.1109/22.60028
12.
12. C. Brosseau, J. Phys. D: Appl. Phys. 39, 1277 (2006).
http://dx.doi.org/10.1088/0022-3727/39/7/S02
13.
13. M. Y. Koledintseva, J. Drewniak, R. Dubroff, K. Rozanov, and B. Archambeault, PIERB 15, 197 (2009).
http://dx.doi.org/10.2528/PIERB09050410
14.
14. S. El Bouazzaoui, M. E. Achour, and C. Brosseau, J. Appl. Phys. 110, 074105 (2011).
http://dx.doi.org/10.1063/1.3644947
15.
15. M. S. Sarto, A. G. D'Aloia, A. Tamburrano, and G. De Bellis, IEEE Trans. Electromagn. Compat. 54(1), 17 (2012).
http://dx.doi.org/10.1109/TEMC.2011.2178853
16.
16. V. Préault, R. Corcolle, L. Daniel, and L. Pichon, IEEE Trans. Electromagn. Compat. 55(6), 1178 (2013).
http://dx.doi.org/10.1109/TEMC.2013.2265173
17.
17. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
http://dx.doi.org/10.1063/1.1728579
18.
18. M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux (Hermes Science, 2001).
19.
19. L. Daniel and R. Corcolle, IEEE Trans. Magn. 43(7), 3153 (2007).
http://dx.doi.org/10.1109/TMAG.2007.896228
20.
20. V. Préault, R. Corcolle, L. Daniel, and L. Pichon, IEEE Trans. Magn. 49(5), 1941 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2244865
21.
21. A. N. Lagarkov and A. K. Sarychev, Phys. Rev. B 53(9), 6318 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.6318
22.
22. M. Y. Koledintseva, R. E. DuBroff, and R. W. Schwartz, PIER 63, 223 (2006).
http://dx.doi.org/10.2528/PIER06052601
23.
23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
24.
24. I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, IEEE Trans. Electromagn. Compat. 51(3), 700 (2009).
http://dx.doi.org/10.1109/TEMC.2009.2018125
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/15/10.1063/1.4871197
Loading
/content/aip/journal/jap/115/15/10.1063/1.4871197
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/15/10.1063/1.4871197
2014-04-17
2016-09-25

Abstract

Composite materials are increasingly used to contribute to structure lightening in electromagnetic shielding applications. The interactions between electromagnetic waves and composite materials are highly dependent on their microstructure. This gives rise to challenging modelling issues. Considering details of the microstructure would involve an excessive number of unknowns with standard numerical tools for structural analysis. Homogenisation methods—such as Maxwell-Garnett model—are a possibility to overcome this problem. The equivalent homogeneous medium obtained with such methods can be introduced into numerical tools to model full shielding enclosures. A homogenisation model has been recently proposed to obtain the equivalent homogeneous properties of composite materials subjected to electromagnetic waves. It relies on the introduction of a length parameter into classical non dimensional semi-analytical homogenisation methods—also known as mean field approaches. The model is applicable at microwave frequencies as long as the induced currents in the fibres (or inclusions) of the composite materials remain weak. This paper proposes an extension of the approach to include skin effect in the homogenisation method. This is done by considering Joule losses within the fibres of the composite. This extension significantly broadens the frequency range covered by the model. The results show that the optimization of composite shielding properties relies on a subtle compromise between internal reflections and Joule losses.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/15/1.4871197.html;jsessionid=nj3Rh0km5i9tQXJ7wo3uU8xJ.x-aip-live-02?itemId=/content/aip/journal/jap/115/15/10.1063/1.4871197&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/15/10.1063/1.4871197&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/15/10.1063/1.4871197'
Right1,Right2,Right3,