1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Paper-based ultracapacitors with carbon nanotubes-graphene composites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/16/10.1063/1.4871290
1.
1. J. R. Miller and P. Simon, Science 321, 651 (2008).
http://dx.doi.org/10.1126/science.1158736
2.
2. L. B. Hu, H. Wu, and Y. Cui, Appl. Phys. Lett. 96, 183502 (2010).
http://dx.doi.org/10.1063/1.3425767
3.
3. Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Science 332, 1537 (2011).
http://dx.doi.org/10.1126/science.1200770
4.
4. M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Science 335, 1326 (2012).
http://dx.doi.org/10.1126/science.1216744
5.
5. K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.489
6.
6. M. Keidar, J. Phys. D: Appl. Phys. 40, 2388 (2007).
http://dx.doi.org/10.1088/0022-3727/40/8/S18
7.
7. O. Volotskova, J. A. Fagan, J. Y. Huh, F. R. Phelan, A. Shashurin, and M. Keidar, ACS Nano 4, 5187 (2010).
http://dx.doi.org/10.1021/nn101279r
8.
8. M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas, and K. K. Ostrikov, J. Appl. Phys. 103, 094318 (2008).
http://dx.doi.org/10.1063/1.2919712
9.
9. J. Li, O. Volotskova, A. Shashurin, and M. Keidar, J. Nanosci. Nanotechnol. 11, 10047 (2011).
http://dx.doi.org/10.1166/jnn.2011.4999
10.
10. O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Nanoscale 2, 2281 (2010).
http://dx.doi.org/10.1039/c0nr00416b
11.
11. J. Li, A. Shashurin, M. Kundrapu, and M. Keidar, J. Vis. Exp. 60, e3455 (2012).
http://dx.doi.org/10.3791/3455
12.
12. J. Li, O. Volotskova, A. Shashurin, and M. Keidar, IEEE Tran. Plasma Sci. 39, 2366 (2011).
http://dx.doi.org/10.1109/TPS.2011.2160567
13.
13. C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, and S. S. Fan, Nano Lett 10, 4025 (2010).
http://dx.doi.org/10.1021/nl1019672
14.
14. P. C. Chen, G. Z. Shen, Y. Shi, H. T. Chen, and C. W. Zhou, ACS Nano 4, 4403 (2010).
http://dx.doi.org/10.1021/nn100856y
15.
15. Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACS Nano 4, 1963 (2010).
http://dx.doi.org/10.1021/nn1000035
16.
16. M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas, and K. Ostrikov, Appl. Phys. Lett. 92, 043129 (2008).
http://dx.doi.org/10.1063/1.2839609
17.
17. S. Farhat and C. D. Scott, J. Nanosci. Nanotechnol. 6, 1189 (2006).
http://dx.doi.org/10.1166/jnn.2006.331
18.
18. M. Keidar and A. M. Waas, Nanotechnology 15, 1571 (2004).
http://dx.doi.org/10.1088/0957-4484/15/11/034
19.
19. L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. U. S. A. 106, 21490 (2009).
http://dx.doi.org/10.1073/pnas.0908858106
20.
20. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
21.
21. A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, and K. Hata, Adv Mater 22, E235 (2010).
http://dx.doi.org/10.1002/adma.200904349
22.
22. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano Lett 8, 3498 (2008).
http://dx.doi.org/10.1021/nl802558y
23.
23. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
http://dx.doi.org/10.1021/nn700375n
24.
24. J. Li, X. Cheng, A. Shashurin, and M. Keidar, “ Review of electrochemical capacitors based on carbon nanotubes and graphene,” Graphene 1, 1 (2012).
http://dx.doi.org/10.4236/graphene.2012.11001
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/16/10.1063/1.4871290
Loading
/content/aip/journal/jap/115/16/10.1063/1.4871290
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/16/10.1063/1.4871290
2014-04-22
2015-05-29

Abstract

In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90 K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100 F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/16/1.4871290.html;jsessionid=366k1n7ujugah.x-aip-live-03?itemId=/content/aip/journal/jap/115/16/10.1063/1.4871290&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Paper-based ultracapacitors with carbon nanotubes-graphene composites
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/16/10.1063/1.4871290
10.1063/1.4871290
SEARCH_EXPAND_ITEM