Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
2. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
3. K. Ando, FED J. 12, 89 (2001) [in Japanese].
4. K. Ando, S. Ikegawa, K. Abe, S. Fujita, and H. Yoda in Energy-Aware Systems and Networking for Sustainable Initiatives, edited by W.-C. Hu and N. Kaabouch (IGI Global, Hershey, 2012), pp. 83107.
5. W. J. Gallagher and S. S. P. Parkin, IBM J. Res. Dev. 50, 523 (2006).
6. T. Kai, M. Yoshikawa, M. Nakayama, Y. Fukuzumi, T. Nagase, E. Kitagawa, T. Ueda, T. Kishi, S. Ikegawa, Y. Asao, K. Tsuchida, H. Yoda, N. Ishiwata, H. Hada, and S. Tahara, Tech. Dig. IEEE Int. Electron Devices Meet. 2004, 583586.
7. M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan, M. DeHerrera, B. N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N. D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J. M. Slaughter, K. Smith, J. J. Sun, M. Lien, K. Papworth, P. Shah, K. Qin, R. Williams, L. Wise, and S. Tehrani, Tech. Dig. IEEE Int. Electron Devices Meet. 2003, 34613463.
8. Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Appl. Phys. Lett. 84, 3118 (2004).
9. S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, Jpn. J. Appl. Phys., Part 2 43, L588 (2004).
10. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004).
11. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nature Mater. 3, 862 (2004).
12. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
13. H. Yoda, Paper Presented at 7th International Workshop on Future Information Processing Technologies, Dresden, 4–7 September 2007;
13. M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, and H. Yoda, J. Appl. Phys. 103, 07A710 (2008).
14. K. Ando, K. Yakushiji, H. Kubota, A. Fukushima, S. Yuasa, T. Kai, T. Kishi, N. Shimomura, H. Aikawa, M. Yoshikawa, T. Nagase, K. Nishiyama, E. Kitagawa, T. Daibou, M. Amano, S. Takahashi, M. Nakayama, S. Ikegawa, M. Nagamine, J. Ozeki, D. Watanabe, H. Yoda, T. Nozaki, Y. Suzuki, M. Oogane, S. Mizukami, Y. Ando, T. Miyazaki, and Y. Nakatani, in Proceedings of 11th Non-Volatile Memory Technology Symposium (NVMTS), Shanghai, 7–9 November (2011), pp. 16.
15. H. Yoda, S. Fujita, N. Shimomura, E. Kitagawa, K. Abe, K. Nomura, H. Noguchi, and J. Ito, IEEE Int. Electron Devices Meet. 2012, 113.
16. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
17. L. Berger, Phys. Rev. B 54, 9353 (1996).
18. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999).
19. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001).
20. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403R (2001).
21. S. Yuasa and D. D. Djayaprawira, J. Phys. D: Appl. Phys. 40, R337 (2007).
22. M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano, Tech. Dig. IEEE Int. Electron Devices Meet. 2005, 459462.
23. S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E. Fullerton, Nature Mater. 5, 210 (2006).
24. H. Yoda, T. Kishi, T. Nagase, M. Yoshikawa, K. Nishiyama, E. Kitagawa, T. Daibou, M. Amano, N. Shimomura, S. Takahashi, T. Kai, M. Nakayama, H. Aikawa, S. Ikegawa, M. Nagamine, J. Ozeki, S. Mizukami, M. Oogane, Y. Ando, S. Yuasa, K. Yakushiji, H. Kubota, Y. Suzuki, Y. Nakatani, T. Miyazaki, and K. Ando, Curr. Appl. Phys. 10, e87 (2010).
25. T. Seki, S. Mitani, K. Yakushiji, and K. Takanashi, Appl. Phys. Lett. 89, 172504 (2006).
26. H. Meng and J.-P. Wanga, Appl. Phys. Lett. 88, 172506 (2006).
27. T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, K. Nishiyama, T. Daibou, M. Nagamine, M. Amano, S. Takahashi, M. Nakayama, N. Shimomura, H. Aikawa, S. Ikegawa, S. Yuasa, K. Yakushiji, H. Kubota, A. Fukushima, M. Oogane, T. Miyazaki, and K. Ando, IEEE Int. Electron Devices Meet. 2008, 14.
28. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010).
29. D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O'Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011).
30. K. Abe, H. Noguchi, E. Kitagawa, N. Shimomura, J. Ito, and S. Fujita, IEEE Int. Electron Devices Meet. 2012, 105.
31. R. H. Koch, J. A. Katine, and J. Z. Sun, Phys. Rev. Lett. 92, 088302 (2004).
32. E. Kitagawa, S. Fujita, K. Nomura, H. Noguchi, K. Abe, K. Ikegami, T. Daibou, Y. Kato, C. Kamata, S. Kashiwada, N. Shimomura, J. Ito, and H. Yoda, IEEE Int. Electron Devices Meet. 2012, 294.
33. H. Noguchi, K. Kushida, K. Ikegami, K. Abe, E. Kitagawa, S. Kashiwada, C. Kamata, A. Kawasumi, H. Hara, and S. Fujita, Tech. Dig. VLSI Symp. Circuits 2013, 93.
34. R. Nebashi, N. Sakimura, H. Honjo, S. Saito, Y. Ito, S. Miura, Y. Kato, K. Mori, Y. Ozaki, Y. Kobayashi, N. Ohshima, K. Kinoshita, T. Suzuki, K. Nagahara, N. Ishiwata, K. Suemitsu, S. Fukami, H. Hada, T. Sugibayashi, and N. Kasai1, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. 2009, 462463.
35. K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, and Y. Watanabe, IEEE Int. Solid-State Circuits Conf. ISSCC Dig. Tech. Pap. 2010, 258260.
36. T. Ohsawa, H. Koike, S. Miura, H. Honjo, K. Tokutome, S. Ikeda, T. Hanyu, H. Ohno, and T. Endoh, Pap. VLSI Symp. Circuits 2012, 4647.
37. A. Kawasumi, K. Kushida, H. Hara, K. Abe, K. Ikegami, H. Noguchi, E. Kitagawa, C. Kamata, Y. Unekawa, S. Kashiwada, Y. Kato, D. Saida, N. Shimomura, J. Ito, and S. Fujita, in Proceedings of the 5th IEEE International Memory Workshop (IMW), May 2013, pp. 7679.
38. C. Tanaka, K. Abe, H. Noguchi, K. Nomura, K. Ikegami, and S. Fujita, paper presented at International Conference on Solid State Device and Materials, 27 September 2013.
39. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
40. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
41. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nature Mater. 11, 39 (2012).
42. S. H. Kang and K. Lee, Acta Mater. 61, 952 (2013).
43. Y. Fujimori, T. Nakamura, and H. Takasu, Integr. Ferroelectr. 47, 71 (2002).

Data & Media loading...


Article metrics loading...



Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., . Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd