1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spin-dependent transport behavior in C60 and Alq3 based spin valves with a magnetite electrode (invited)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/17/10.1063/1.4870154
1.
1. V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00090-X
2.
2. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).
http://dx.doi.org/10.1038/nature02325
3.
3. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, and A. Fert, Nature Phys. 6, 615 (2010).
http://dx.doi.org/10.1038/nphys1688
4.
4. S. Steil, N. Großmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and M. Aeschlimann, Nature Phys. 9, 242 (2013).
http://dx.doi.org/10.1038/nphys2548
5.
5. K. V. Raman, A. M. Kamerbeek, A. Mukherjee, N. Atodiresei, T. K. Sen, P. Lazic, V. Caciuc, R. Michel, D. Stalke, S. K. Mandal, S. Blugel, M. Munzenberg, and J. S. Moodera, Nature 493, 509 (2013).
http://dx.doi.org/10.1038/nature11719
6.
6. S. Majumdar, R. Laiho, P. Laukkanen, I. J. Väyrynen, H. S. Majumdar, and R. Österbacka, Appl. Phys. Lett. 89, 122114 (2006).
http://dx.doi.org/10.1063/1.2356463
7.
7. Y. Sakai, E. Tamura, S. Toyokawa, E. Shikoh, V. K. Lazarov, A. Hirohata, T. Shinjo, Y. Suzuki, and M. Shiraishi, Adv. Funct. Mater. 22, 3845 (2012).
http://dx.doi.org/10.1002/adfm.201200638
8.
8. K. Z. Suzuki, H. Yanagihara, T. Niizeki, K. Kojio, and E. Kita, Appl. Phys. Lett. 101, 222401 (2012).
http://dx.doi.org/10.1063/1.4768783
9.
9. T. X. Wang, H. X. Wei, Z. M. Zeng, X. F. Han, Z. M. Hong, and G. Q. Shi, Appl. Phys. Lett. 88, 242505 (2006).
http://dx.doi.org/10.1063/1.2213177
10.
10. J.-Y. Hong, Y.-M. Chang, C.-H. Chuang, K.-S. Li, Y.-C. Jhang, H.-W. Shiu, C.-H. Chen, W.-C. Chiang, and M.-T. Lin, J. Phys. Chem. C 116, 21157 (2012).
http://dx.doi.org/10.1021/jp3026557
11.
11. X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Appl. Phys. Lett. 99, 162509 (2011).
http://dx.doi.org/10.1063/1.3651766
12.
12. X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, J. Appl. Phys. 111, 07B320 (2012).
http://dx.doi.org/10.1063/1.3676240
13.
13. P. A. Bobbert, W. Wagemans, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 102, 156604 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.156604
14.
14. Z. G. Yu, Phys. Rev. Lett. 106, 106602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.106602
15.
15. N. J. Harmon and M. E. Flatté, Phys. Rev. Lett. 110, 176602 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.176602
16.
16. T. S. Santos, J. S. Lee1, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.016601
17.
17. J. J. H. M. Schoonus, P. G. E. Lumens, W. Wagemans, J. T. Kohlhepp, P. A. Bobbert, H. J. M. Swagten, and B. Koopmans, Phys. Rev. Lett. 103, 146601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146601
18.
18. V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78, 115203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115203
19.
19. A. J. Drew, J. Hoppler, L. Schulz, F. L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, A. Suter, N. A. Morley, V. K. Malik, A. Dubroka, K. W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G. J. Nieuwenhuys, T. Prokscha, and E. Morenzoni, Nature Mater. 8, 109 (2009).
http://dx.doi.org/10.1038/nmat2333
20.
20. H.-J. Jang, K. P. Pernstich, D. J. Gundlach, O. D. Jurchescu, and C. A. Richter, Appl. Phys. Lett. 101, 102412 (2012).
http://dx.doi.org/10.1063/1.4751257
21.
21. D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X.-G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, Phys. Rev. Lett. 104, 236602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.236602
22.
22. L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin, and A. J. Drew, Nature Mater. 10, 39 (2011).
http://dx.doi.org/10.1038/nmat2912
23.
23. F. C. Wang, Z. H. Xiong, D. Wu, J. Shi, and Z. V. Vardeny, Synth. Met. 155, 172 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.345
24.
24. Y. H. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Phys. Rev. B 79, 075312 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075312
25.
25. X. M. Zhang, S. Mizukami, T. Kubota, M. Oogane, H. Naganuma, Y. Ando, and T. Miyazaki, IEEE Trans. Magn. 47, 2649 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2143392
26.
26. F. J. Wang, C. G. Yang, Z. Valy Vardeny, and X. G. Li, Phys. Rev. B 75, 245324 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245324
27.
27. Y. H. Liu, T. Lee, H. E. Katz, and D. H. Reich, J. Appl. Phys. 105, 07C708 (2009).
http://dx.doi.org/10.1063/1.3068468
28.
28. J. S. Jiang, J. E. Pearson, and S. D. Bader, Phys. Rev. B 77, 035303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035303
29.
29. A. Yanase and K. Siratori, J. Phys. Soc. Jpn. 53, 312 (1984).
http://dx.doi.org/10.1143/JPSJ.53.312
30.
30. Z. Zhang and S. Satpathy, Phys. Rev. B 44, 13319 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13319
31.
31. Y. S. Dedkov, U. Rüdiger, and G. Güntherodt, Phys. Rev. B 65, 064417 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.064417
32.
32. E. J. W. Verwey, Nature 144, 327 (1939).
http://dx.doi.org/10.1038/144327b0
33.
33. N. J. Harmon and M. E. Flatté, Phys. Rev. Lett. 108, 186602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186602
34.
34. Y. G. Yu, Phys. Rev. B 85, 115201 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115201
35.
35. Y. G. Yu, Phys. Rev. Lett. 111, 016601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.016601
36.
36. X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, M. Oogane, H. Naganuma, Y. Ando, and T. Miyazaki, Nat. Commun. 4, 1392 (2013).
http://dx.doi.org/10.1038/ncomms2423
37.
37. T. D. Nguyen, G. Hukic-Markosian, F. J. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, Synth. Met. 161, 598 (2011).
http://dx.doi.org/10.1016/j.synthmet.2010.12.013
38.
38. M. Gobbi, F. Golmar, R. Llopis, F. Casanova, and L. E. Hueso, Adv. Mater. 23, 1609 (2011).
http://dx.doi.org/10.1002/adma.201004672
39.
39. R. Lin, F. J. Wang, M. Wohlgenannt, C. Y. He, X. F. Zhai, and Y. Suzuki, Synth. Met. 161, 553 (2011).
http://dx.doi.org/10.1016/j.synthmet.2010.11.012
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/17/10.1063/1.4870154
Loading
/content/aip/journal/jap/115/17/10.1063/1.4870154
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/17/10.1063/1.4870154
2014-04-09
2014-09-21

Abstract

The spin-dependent transport behavior in organic semiconductors (OSs) is generally observed at low temperatures, which likely results from poor spin injection efficiency at room temperature from the ferromagnetic metal electrodes to the OS layer. Possible reasons for this are the low Curie temperature and/or the small spin polarization efficiency for the ferromagnetic electrodes used in these devices. Magnetite has potential as an advanced candidate for use as the electrode in spintronic devices, because it can achieve 100% spin polarization efficiency in theory, and has a high Curie temperature (850 K). Here, we fabricated two types of organic spin valves using magnetite as a high efficiency electrode. C and 8-hydroxyquinoline aluminum (Alq) were employed as the OS layers. Magnetoresistance ratios of around 8% and over 6% were obtained in C and Alq-based spin valves at room temperature, respectively, which are two of the highest magnetoresistance ratios in organic spin valves reported thus far. The magnetoresistance effect was systemically investigated by varying the thickness of the Alq layer. Moreover, the temperature dependence of the magnetoresistance ratios for C and Alq-based spin valves were evaluated to gain insight into the spin-dependent transport behavior. This study provides a useful method in designing organic spin devices operated at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/17/1.4870154.html;jsessionid=5d5nkj63qa65e.x-aip-live-06?itemId=/content/aip/journal/jap/115/17/10.1063/1.4870154&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spin-dependent transport behavior in C60 and Alq3 based spin valves with a magnetite electrode (invited)
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/17/10.1063/1.4870154
10.1063/1.4870154
SEARCH_EXPAND_ITEM