1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Magnetic scanning gate microscopy of graphene Hall devices (invited)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/17/10.1063/1.4870587
1.
1. K. Togawa et al., IEEE Trans. Magn. 41, 36613663 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854789
2.
2. A. Sandhu et al., Nanotechnology 21, 442001 (2010).
http://dx.doi.org/10.1088/0957-4484/21/44/442001
3.
3. J. Heremans, J. Phys. D: Appl. Phys. 26, 11491168 (1993).
http://dx.doi.org/10.1088/0022-3727/26/8/001
4.
4. S. A. Solin et al., Meas. Sci. Technol. 8, 11741181 (1997).
http://dx.doi.org/10.1088/0957-0233/8/10/021
5.
5. T. Kebe, J. Appl. Phys. 95, 775 (2004).
http://dx.doi.org/10.1063/1.1633979
6.
6. A. Baumgartner et al., Phys. Rev. B 74, 165426 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165426
7.
7. A. Baumgartner et al., Phys. Rev. B 76, 085316 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085316
8.
8. L. Folks et al., J. Phys.: Condens. Matter 21, 255802 (2009).
http://dx.doi.org/10.1088/0953-8984/21/25/255802
9.
9. V. Nabaei et al., J. Appl. Phys. 113, 064504 (2013).
http://dx.doi.org/10.1063/1.4790508
10.
10. R. K. Rajkumar et al., IEEE Trans. Magn. 49, 34453448 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2243708
11.
11. V. Panchal et al., IEEE Trans. Magn. 49, 35203523 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2243127
12.
12. V. Panchal et al., J. Appl. Phys. 111, 07E509 (2012).
http://dx.doi.org/10.1063/1.3677769
13.
13. J. Moser et al., Appl. Phys. Lett. 91, 163513 (2007).
http://dx.doi.org/10.1063/1.2789673
14.
14. U. Zerweck et al., Phys. Rev. B 71, 125424 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125424
15.
15. C. Virojanadara et al., Phys. Rev. B 78, 245403 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245403
16.
16. K. V. Emtsev et al., Nature Mater. 8, 203207 (2009).
http://dx.doi.org/10.1038/nmat2382
17.
17. R. Yakimova et al., Mater. Sci. Forum 645–648, 565568 (2010).
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.565
18.
18. A. Tzalenchuk et al., Nat. Nanotechnol. 5, 186189 (2010).
http://dx.doi.org/10.1038/nnano.2009.474
19.
19. O. Kazakova et al., Crystals 3, 191233 (2013).
http://dx.doi.org/10.3390/cryst3010191
20.
20. I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
21.
21.See www.brukerafmprobes.com for data specification about MESP and HM-MESP probes.
22.
22. V. Panchal et al., Sci. Rep. 3, 2597 (2013).
http://dx.doi.org/10.1038/srep02597
23.
23. V. Panchal, Epitaxial Graphene Nanodevices and Their Applications for Electronic and Magnetic Sensing (Royal Holloway, University of London, 2014).
24.
24. C. Barth et al., New J. Phys. 12, 093024 (2010).
http://dx.doi.org/10.1088/1367-2630/12/9/093024
25.
25. L. Di Michele et al., J. Appl. Phys. 110, 063916 (2011).
http://dx.doi.org/10.1063/1.3638124
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/17/10.1063/1.4870587
Loading
/content/aip/journal/jap/115/17/10.1063/1.4870587
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/17/10.1063/1.4870587
2014-04-14
2014-09-22

Abstract

We have performed sensitivity mapping of graphene Hall devices with the width of 0.6–15 m operating in the diffusive regime under non-uniform, local magnetic and electric fields induced by a scanning metallic magnetic probe. The transverse voltage was recorded, while tuning the magnitude and orientation of the bias current, the probe-sample distance, and orientation of the probe magnetization. A strong two-fold symmetry pattern has been observed, as a consequence of capacitive coupling between the probe and the sample. The effect is particularly pronounced in small devices (<1 m), where the dominating electric field contribution significantly lowers the effective area of the magnetic sensor. We show that implementation of the Kelvin probe feedback loop in the standard scanning gate microscopy setup drastically reduces parasitic electric field effects and improves magnetic sensitivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/17/1.4870587.html;jsessionid=2iqg8eecneegj.x-aip-live-06?itemId=/content/aip/journal/jap/115/17/10.1063/1.4870587&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic scanning gate microscopy of graphene Hall devices (invited)
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/17/10.1063/1.4870587
10.1063/1.4870587
SEARCH_EXPAND_ITEM