Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/17/10.1063/1.4874222
1.
1. D. Damjanovic, Rep. Prog. Phys. 61, 12671324 (1998).
http://dx.doi.org/10.1088/0034-4885/61/9/002
2.
2. D. Damjanovic, J. Appl. Phys. 82, 17881797 (1997).
http://dx.doi.org/10.1063/1.365981
3.
3. D. A. Hall, J. Mater. Sci. 36, 45754601 (2001).
http://dx.doi.org/10.1023/A:1017959111402
4.
4. R. E. Eitel, T. R. Shrout, and C. A. Randall, J. Appl. Phys. 99, 124110 (2006).
http://dx.doi.org/10.1063/1.2207738
5.
5. P. Yang and D. A. Payne, J. Appl. Phys. 71, 13611367 (1992).
http://dx.doi.org/10.1063/1.351254
6.
6. X. Tan, C. Ma, J. Frederick, S. Beckman, and K. G. Webber, J. Am. Ceram. Soc. 94, 40914107 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04917.x
7.
7. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, and P. J. Withers, J. Appl. Phys. 96, 42454252 (2004).
http://dx.doi.org/10.1063/1.1787590
8.
8. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, P. J. Withers, and T. Mori, J. Mech. Phys. Solids 53, 249260 (2005).
http://dx.doi.org/10.1016/j.jmps.2004.07.002
9.
9. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, and P. J. Withers, Acta Mater. 54, 30753083 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.02.043
10.
10. J. L. Jones, B. J. Iverson, and K. J. Bowman, J. Am. Ceram. Soc. 90, 22972314 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01820.x
11.
11. K. A. Schönau, M. Knapp, H. Kungl, M. J. Hoffmann, and H. Fuess, Phys. Rev. B 76, 144112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144112
12.
12. A. K. Singh, S. K. Mishra, Ragini, D. Pandey, S. Yoon, S. Baik, and N. Shin, Appl. Phys. Lett. 92, 022910 (2008).
http://dx.doi.org/10.1063/1.2836269
13.
13. A. Pramanick, J. E. Daniels, and J. L. Jones, J. Am. Ceram. Soc. 92, 23002310 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03219.x
14.
14. A. Pramanick, D. Damjanovic, J. E. Daniels, J. C. Nino, and J. L. Jones, J. Am. Ceram. Soc. 94, 293309 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04240.x
15.
15. J. E. Daniels, W. Jo, J. Rödel, V. Honkimäki, and J. L. Jones, Acta Mater. 58, 21032111 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.11.052
16.
16. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 7193 (2012).
http://dx.doi.org/10.1007/s10832-012-9742-3
17.
17. K. G. Webber, E. Aulbach, and J. Rödel, J. Phys. D: Appl. Phys. 43, 365401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/36/365401
18.
18. R. Dittmer, K. G. Webber, E. Aulbach, W. Jo, X. Tan, and J. Rödel, Sens. Actuators, A 189, 187194 (2013).
http://dx.doi.org/10.1016/j.sna.2012.09.015
19.
19. Y. H. Seo, A. Benčan, J. Koruza, B. Malič, M. Kosec, and K. G. Webber, J. Am. Ceram. Soc. 94(12), 44194425 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04889.x
20.
20. Y. H. Seo, D. J. Franzbach, J. Koruza, A. Benčan, B. Malič, M. Kosec, J. L. Jones, and K. G. Webber, Phys. Rev. B 87, 094116 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094116
21.
21. A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, J. Phys.: Conf. Ser. 186, 012073 (2009).
22.
22. P. Coan, A. Peterzol, S. Fiedler, C. Ponchut, J. C. Labiche, and A. Bravin, J. Synchrotron Radiat. 13, 260270 (2006).
http://dx.doi.org/10.1107/S0909049506008983
23.
23. J. C. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. G. Ferre, C. Curfs, G. Vaughan, A. Homs, and D. F. Carreiras, Rev. Sci. Instrum. 78, 091301 (2007).
http://dx.doi.org/10.1063/1.2783112
24.
24.See http://admet.com/products/universal-testing-machines/ for a description of the loading device.
25.
25. J. D. Almer and R. A. Winholtz, “ X-ray stress analysis,” in Handbook of Experimental Solid Mechanics, edited by W. N. Sharpe (Springer, 2008).
26.
26. L. Daniel, D. A. Hall, and P. J. Withers, Mech. Mater. 71, 85100 (2014).
http://dx.doi.org/10.1016/j.mechmat.2014.01.006
27.
27. J. E. Huber, N. A. Fleck, C. M. Landis, and R. M. McMeeking, J. Mech. Phys. Solids 47, 1663 (1999).
http://dx.doi.org/10.1016/S0022-5096(98)00122-7
28.
28. M. Kamlah, A. C. Liskowsky, R. M. McMeeking, and H. Balke, Int. J. Solids Struct. 42, 2949 (2005).
http://dx.doi.org/10.1016/j.ijsolstr.2004.09.045
29.
29. L. Daniel, D. A. Hall, and P. J. Withers, “ A multiscale modelling analysis of the contribution of crystalline elastic anisotropy to intergranular stresses in ferroelectric materials,” J. Phys. D: Appl. Phys. (submitted).
30.
30. M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux. Tome 1: Matériaux aléatoires élastiques et milieux périodiques (Hermès Science, 2001).
31.
31. M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux. Tome 2: Comportements non linaires et problèmes ouverts (Hermès Science, 2001).
32.
32. R. Corcolle, L. Daniel, and F. Bouillault, Phys. Rev. B 78(21), 214110 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.214110
33.
33. J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376396 (1957).
http://dx.doi.org/10.1098/rspa.1957.0133
34.
34. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, 1982).
35.
35. A. Sihvola, Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, Vol. 47 (IET, 1999).
36.
36. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002).
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/17/10.1063/1.4874222
Loading
/content/aip/journal/jap/115/17/10.1063/1.4874222
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/17/10.1063/1.4874222
2014-05-02
2016-12-03

Abstract

High energy x-ray diffraction measurements of lattice strains were performed on a rhombohedral Lead Zirconate Titanate ceramic (PZT 55-45) under combinations of applied electric field and compressive stress. These measurements allow the construction of blocking stress curves for different sets of crystallographic orientations which reflect the single crystal elastic anisotropy. A micro-mechanical interpretation of the results is then proposed. Assuming cubic symmetry for the crystalline elastic stiffness tensor and isotropy for the macroscopic elastic properties, the elastic properties of the single crystal are extracted from the measured data. An anisotropy ratio close to 0.3 is found (compared to 1 for isotropic materials). The high level of anisotropy found in this work suggests that crystalline elastic anisotropy should not be neglected in the modelling of ferroelectric materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/17/1.4874222.html;jsessionid=6nv43gSbMAf1_WReZxiC9eOC.x-aip-live-06?itemId=/content/aip/journal/jap/115/17/10.1063/1.4874222&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/17/10.1063/1.4874222&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4874222'
Right1,Right2,Right3,