Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/19/10.1063/1.4876265
1.
1. C. Kittel, Introduction to Solid State Physics, 8th ed. (Hoboken, NJ, 2005).
2.
2. D. Hull and D. J. Bacon, Introduction to Dislocations (Pergamon, Oxford, 1994).
3.
3. M. Ieong, B. Doris, J. Kedzierski, and M. Yang, Science 306, 2057 (2004).
http://dx.doi.org/10.1126/science.1100731
4.
4. T. Skotnicki, Microelectron. Eng. 84, 1845 (2007).
http://dx.doi.org/10.1016/j.mee.2007.04.091
5.
5. R. Labusch and W. Schröter, in Dislocations in Solids, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1980), Vol. 5, p. 127.
6.
6. D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors (Cambridge University Press, Cambridge, 2007).
7.
7. H. Alexander and H. Teichler, in Materials Science and Technology, edited by R. W. Cahn, P. Haasen, and E. J. Kramer (VCH, Weinheim, 1991), Vol. 4, p. 249.
8.
8. W. Schröter and H. Cerva, Solid State Phenom. 85–86, 67 (2002).
http://dx.doi.org/10.4028/www.scientific.net/SSP.85-86.67
9.
9. V. Kveder, M. Kittler, and W. Schröter, Phys. Rev. B 63, 115208 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.115208
10.
10. F. Calzecchi, P. Gondi, and F. Schintu, Nuovo Cimento B 58, 376 (1968).
http://dx.doi.org/10.1007/BF02711811
11.
11. S. K. Milshtein and V. I. Nikitenko, JETP Lett. 13, 233 (1971).
12.
12. V. G. Eremenko, V. I. Nikitenko, and A. B. Yakimov, Sov. Phys.-JETP 40, 570 (1975).
13.
13. M. Reiche, M. Kittler, R. Scholz, A. Hähnel, and T. Arguirov, J. Phys.: Conf. Ser. 281, 012017 (2011).
http://dx.doi.org/10.1088/1742-6596/281/1/012017
14.
14. M. Kittler, X. Yu, T. Mchedlidze, T. Arguirov, O. F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Voß, A. Wolff, and W. Fritzsche, Small 3, 964 (2007).
http://dx.doi.org/10.1002/smll.200600539
15.
15. M. Kittler, M. Reiche, X. Yu, T. Arguirov, O. F. Vyvenko, W. Seifert, T. Mchedlidze, G. Jia, and T. Wilhelm, in 1.5 μm Emission from a Silicon MOS-LED Based on a Dislocation Network (IEEE, San Francisco, 2006), p. 845.
16.
16. M. Kittler and M. Reiche, Adv. Eng. Mater. 11, 249 (2009).
http://dx.doi.org/10.1002/adem.200800283
17.
17. Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, New York, 1999).
18.
18. M. Reiche and U. Gösele, in Handbook of Wafer Bonding, edited by P. Ramm, J. J.-Q. Lu, and M. M. V. Taklo (Wiley-VCH, Weinheim, 2012), p. 81.
19.
19. M. Reiche, M. Kittler, D. Buca, A. Hähnel, Q.-T. Zhao, S. Mantl, and U. Gösele, Jpn. J. Appl. Phys., Part 1 49, 04DJ02 (2010).
http://dx.doi.org/10.1143/JJAP.49.04DJ02
20.
20. B. Joos, Q. Ren, and M. S. Suesbery, Phys. Rev. B 50, 5890 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5890
21.
21. A. Y. Belov, R. Scholz, and K. Scheerschmidt, Philos. Mag. Lett. 79, 531 (1999).
http://dx.doi.org/10.1080/095008399176896
22.
22. P. L. Galindo, S. Kret, A. M. Sanchez, J.-Y. Laval, A. Yanez, J. Pizarro, E. Guerrero, T. Ben, and S. I. Molina, Ultramicroscopy 107, 1186 (2007).
http://dx.doi.org/10.1016/j.ultramic.2007.01.019
23.
23. H. Alexander, H. Gottschalk, and C. Kisielowski-Kemmerich, in Dislocations in Solids, edited by H. Suzuki, T. Ninomiya, K. Sumino, and S. Takeuchi (University of Tokyo Press, Tokyo, 1985), p. 337.
24.
24. A. T. Blumenau, PhD dissertation, University of Paderborn, 2002.
25.
25. C. W. Zhao and Y. M. Xing, Proc. SPIE 7375, 737508 (2009).
http://dx.doi.org/10.1117/12.839009
26.
26. M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
http://dx.doi.org/10.1063/1.363052
27.
27. M. Reiche, O. Moutanabbir, J. Hoentschel, A. Hähnel, S. Flachowsky, U. Gösele, and M. Horstmann, in Mechanical Stress on the Nanoscale: Simulation, Material Systems and Characterization Techniques, edited by M. Hanbücken, P. Müller, and R. B. Wehrspohn (Wiley-VCH, Weinheim, 2011), p. 131.
28.
28. S. Z. Karazhanov, A. Davletova, and A. Ulyashin, J. Appl. Phys. 104, 024501 (2008).
http://dx.doi.org/10.1063/1.2940135
29.
29. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001).
http://dx.doi.org/10.1038/35065571
30.
30. T. Vogelsang and K. R. Hofmann, Appl. Phys. Lett. 63, 186 (1993).
http://dx.doi.org/10.1063/1.110394
31.
31. K. Uchida, T. Krishnamohan, K. Saraswat, and Y. Nishi, in Physical Mechanisms of Electron Mobility Enhancement in Uniaxial Stressed MOSFETs and Impact on Uniaxial Stress Engineering in Ballistic Regime (IEEE, Washington, 2005), p. 135.
http://dx.doi.org/10.1109/IEDM.2005.1609286
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/19/10.1063/1.4876265
Loading
/content/aip/journal/jap/115/19/10.1063/1.4876265
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/19/10.1063/1.4876265
2014-05-19
2016-12-09

Abstract

A detailed knowledge of the electronic properties of individual dislocations is necessary for next generation nanodevices. Dislocations are fundamental crystal defects controlling the growth of different nanostructures (nanowires) or appear during device processing. We present a method to record electric properties of single dislocations in thin silicon layers. Results of measurements on single screw dislocations are shown for the first time. Assuming a cross-section area of the dislocation core of about 1 nm2, the current density through a single dislocation is  = 3.8 × 1012 A/cm2 corresponding to a resistivity of ρ ≅ 1 × 10−8 Ω cm. This is about eight orders of magnitude lower than the surrounding silicon matrix. The reason of the supermetallic behavior is the high strain in the cores of the dissociated dislocations modifying the local band structure resulting in high conductive carrier channels along defect cores.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/19/1.4876265.html;jsessionid=yknOgCcNaEvcr7oA-wRYh0U9.x-aip-live-03?itemId=/content/aip/journal/jap/115/19/10.1063/1.4876265&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/19/10.1063/1.4876265&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/19/10.1063/1.4876265'
Right1,Right2,Right3,