Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Kittel, Introduction to Solid State Physics, 8th ed. (Hoboken, NJ, 2005).
2. D. Hull and D. J. Bacon, Introduction to Dislocations (Pergamon, Oxford, 1994).
3. M. Ieong, B. Doris, J. Kedzierski, and M. Yang, Science 306, 2057 (2004).
4. T. Skotnicki, Microelectron. Eng. 84, 1845 (2007).
5. R. Labusch and W. Schröter, in Dislocations in Solids, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1980), Vol. 5, p. 127.
6. D. B. Holt and B. G. Yacobi, Extended Defects in Semiconductors (Cambridge University Press, Cambridge, 2007).
7. H. Alexander and H. Teichler, in Materials Science and Technology, edited by R. W. Cahn, P. Haasen, and E. J. Kramer (VCH, Weinheim, 1991), Vol. 4, p. 249.
8. W. Schröter and H. Cerva, Solid State Phenom. 85–86, 67 (2002).
9. V. Kveder, M. Kittler, and W. Schröter, Phys. Rev. B 63, 115208 (2001).
10. F. Calzecchi, P. Gondi, and F. Schintu, Nuovo Cimento B 58, 376 (1968).
11. S. K. Milshtein and V. I. Nikitenko, JETP Lett. 13, 233 (1971).
12. V. G. Eremenko, V. I. Nikitenko, and A. B. Yakimov, Sov. Phys.-JETP 40, 570 (1975).
13. M. Reiche, M. Kittler, R. Scholz, A. Hähnel, and T. Arguirov, J. Phys.: Conf. Ser. 281, 012017 (2011).
14. M. Kittler, X. Yu, T. Mchedlidze, T. Arguirov, O. F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Voß, A. Wolff, and W. Fritzsche, Small 3, 964 (2007).
15. M. Kittler, M. Reiche, X. Yu, T. Arguirov, O. F. Vyvenko, W. Seifert, T. Mchedlidze, G. Jia, and T. Wilhelm, in 1.5 μm Emission from a Silicon MOS-LED Based on a Dislocation Network (IEEE, San Francisco, 2006), p. 845.
16. M. Kittler and M. Reiche, Adv. Eng. Mater. 11, 249 (2009).
17. Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, New York, 1999).
18. M. Reiche and U. Gösele, in Handbook of Wafer Bonding, edited by P. Ramm, J. J.-Q. Lu, and M. M. V. Taklo (Wiley-VCH, Weinheim, 2012), p. 81.
19. M. Reiche, M. Kittler, D. Buca, A. Hähnel, Q.-T. Zhao, S. Mantl, and U. Gösele, Jpn. J. Appl. Phys., Part 1 49, 04DJ02 (2010).
20. B. Joos, Q. Ren, and M. S. Suesbery, Phys. Rev. B 50, 5890 (1994).
21. A. Y. Belov, R. Scholz, and K. Scheerschmidt, Philos. Mag. Lett. 79, 531 (1999).
22. P. L. Galindo, S. Kret, A. M. Sanchez, J.-Y. Laval, A. Yanez, J. Pizarro, E. Guerrero, T. Ben, and S. I. Molina, Ultramicroscopy 107, 1186 (2007).
23. H. Alexander, H. Gottschalk, and C. Kisielowski-Kemmerich, in Dislocations in Solids, edited by H. Suzuki, T. Ninomiya, K. Sumino, and S. Takeuchi (University of Tokyo Press, Tokyo, 1985), p. 337.
24. A. T. Blumenau, PhD dissertation, University of Paderborn, 2002.
25. C. W. Zhao and Y. M. Xing, Proc. SPIE 7375, 737508 (2009).
26. M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
27. M. Reiche, O. Moutanabbir, J. Hoentschel, A. Hähnel, S. Flachowsky, U. Gösele, and M. Horstmann, in Mechanical Stress on the Nanoscale: Simulation, Material Systems and Characterization Techniques, edited by M. Hanbücken, P. Müller, and R. B. Wehrspohn (Wiley-VCH, Weinheim, 2011), p. 131.
28. S. Z. Karazhanov, A. Davletova, and A. Ulyashin, J. Appl. Phys. 104, 024501 (2008).
29. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, Nature 410, 192 (2001).
30. T. Vogelsang and K. R. Hofmann, Appl. Phys. Lett. 63, 186 (1993).
31. K. Uchida, T. Krishnamohan, K. Saraswat, and Y. Nishi, in Physical Mechanisms of Electron Mobility Enhancement in Uniaxial Stressed MOSFETs and Impact on Uniaxial Stress Engineering in Ballistic Regime (IEEE, Washington, 2005), p. 135.

Data & Media loading...


Article metrics loading...



A detailed knowledge of the electronic properties of individual dislocations is necessary for next generation nanodevices. Dislocations are fundamental crystal defects controlling the growth of different nanostructures (nanowires) or appear during device processing. We present a method to record electric properties of single dislocations in thin silicon layers. Results of measurements on single screw dislocations are shown for the first time. Assuming a cross-section area of the dislocation core of about 1 nm2, the current density through a single dislocation is  = 3.8 × 1012 A/cm2 corresponding to a resistivity of ρ ≅ 1 × 10−8 Ω cm. This is about eight orders of magnitude lower than the surrounding silicon matrix. The reason of the supermetallic behavior is the high strain in the cores of the dissociated dislocations modifying the local band structure resulting in high conductive carrier channels along defect cores.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd