Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y.-F. Wu, Y.-T. Nien, Y.-J. Wang, and I.-G. Chen, J. Am. Ceram. Soc. 95, 1360 (2012).
2. T. M. Mazzo, M. L. Moreira, I. M. Pinatti, F. C. Picon, E. R. Leite, I. L. V. Rosa, J. A. Varela, L. A. Perazolli, and E. Longo, Opt. Mater. 32, 990 (2010).
3. J. Milanez, A. T. de Figueiredo, S. de Lazaro, V. M. Longo, R. Erlo, V. R. Mastelaro, R. W. A. Franco, E. Longo, and J. A. Varela, J. Appl. Phys. 106, 043526 (2009).
4. L. Panpan, Y. Jing, M. Xiaoyang, Z. Lexi, and B. Lijian, J. Rare Earths 31, 555 (2013).
5. Y. Chen, S. Patel, Y. Ye, D. Shaw, and L. Guo, Appl. Phys. Lett. 73, 2119 (1998).
6. H. Takashima, K. Ueda, and M. Itoh, Appl. Phys. Lett. 89, 261915 (2006).
7. T. Kyomen, R. Sakamoto, N. Sakamoto, S. Kunugi, and M. Itoh, Chem. Mater. 17, 3200 (2005).
8. S. Dutta, S. Som, and S. K. Sharma, Dalton Trans. 42, 9654 (2013).
9. Y.-T. Nien, K.-M. Chen, I.-G. Chen, and T.-Y. Lin, J. Am. Ceram. Soc. 91, 3599 (2008).
10. A. K. Ambast, A. K. Kunti, S. Som, and S. K. Sharma, Appl. Opt. 52, 8424 (2013).
11. A. K. Ambast, J. Goutam, S. Som, and S. K. Sharma, Spectrochim. Acta, Part A 122, 93 (2014).
12. H. F. Kay and P. C. Bailey, Acta Crystallogr. 10, 219 (1957).
13. A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, J. Vac. Sci. Technol. B 12, 781 (1994).
14. S. Cho, J. Yoo, and J. Lee, J. Electrochem. Soc. 143, L231 (1996).
15. A. Purwanto, D. Hidayat, Y. Terashi, and K. Okuyama, Chem. Mater. 20, 7440 (2008).
16. S. K. Sharma, S. Dutta, S. Som, and P. S. Mandal, J. Mater. Sci. Technol. 29, 633 (2013).
17. A. K. Parchur and R. S. Ningthoujam, Dalton Trans. 40, 7590 (2011).
18. A. K. Parchur, A. I. Prasad, S. B. Rai, and R. S. Ningthoujam, Dalton Trans. 41, 13810 (2012).
19. D. Y. Lu, X. Y. Sun, and M. Toda, Jpn. J. Appl. Phys., Part 1 45, 8782 (2006).
20. A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, Dalton Trans. 40, 7595 (2011).
21. Y. K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S. N. Gorb, and R. Adelung, Part. Part. Syst. Char. 30, 775 (2013).
22. X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y. K. Mishra, R. Adelung, S. N. Gorb, and A. Staubitz, Adv. Mater. 24, 5676 (2012).
23. S. Som, S. K. Sharma, and S. P. Lochab, Mater. Res. Bull. 48, 844 (2013).
24. X. Jin, M. Götz, S. Wille, Y. K. Mishra, R. Adelung, and C. Zollfrank, Adv. Mater. 25, 1342 (2013).
25. A. E. Morales, E. S. Mora, and U. Pal, Rev. Mex. Fis. S 53(5), 18 (2007); available at
26. J. Tauc and A. Menth, J. Non-Cryst. Solids 8, 569 (1972).
27. S. Dutta, S. Som, J. Priya, and S. K. Sharma, Solid State Sci. 18, 114 (2013).
28. B.-S. Tsai, Y.-H. Chang, and Y.-C. Chen, Electrochem. Solid-State Lett. 8, H55 (2005).
29. K.-W. Huang, W.-T. Chen, C.-I. Chu, S.-F. Hu, H.-S. Sheu, B.-M. Cheng, J.-M. Chen, and R.-S. Liu, Chem. Mater. 24, 2220 (2012).
30. R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer, and H. Hahn, J. Appl. Phys. 89, 1679 (2001).
31. Y. Sun, L. Qi, M. Lee, B. I. Lee, W. D. Samuels, and G. J. Exarhos, J. Lumin. 109, 85 (2004).
32. Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, and Y.-J. Lin, J. Alloys Compd. 439, 367 (2007).
33. S. Som and S. K. Sharma, J. Phys. D: Appl. Phys. 45, 415102 (2012).
34. J. P. Rainhoa, D. Ananias, Z. Lin, A. Ferreira, L. D. Carlos, and J. Rocha, J. Alloys Compd. 374, 185 (2004).
35. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, J. Appl. Phys. 109, 053511 (2011).
36. P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, J. Phys. D: Appl. Phys. 42, 045106 (2009).
37. J. M. F. Van Dijk and M. F. H. Schuurmans, J. Chem. Phys. 78, 5317 (1983).
38. H. You and G. Hong, J. Phys. Chem. Solids 60, 325 (1999).
39. B. Liu, M. Gu, X. Liu, K. Han, S. Huang, C. Ni, G. Zhang, and Z. Qi, Appl. Phys. Lett. 94, 061906 (2009).
40. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
41. G. Blasse, J. Solid State Chem. 62, 207 (1986).
42. G. Blasse and B. C. Grabmarier, Luminescent Materials (Springer-Verlag, Berlin, 1994), p. 99.
43. D. L. Dexter and J. H. Schulman, J. Chem. Phys. 22, 1063 (1954).
44. Q. Liu, Y. Liu, Z. Yang, Y. Han, X. Li, and G. Fu, J. Alloys Compd. 515, 16 (2012).
45. Q. Zhang, J. Wang, M. Zhang, W. Ding, and Q. Su, Appl. Phys. A 88, 805 (2007).
46. S. Som, S. Dutta, V. Kumar, V. Kumar, H. C. Swart, and S. K. Sharma, J. Lumin. 146, 162 (2014).
47. V. Kumar, N. Singh, V. Kumar, L. P. Purohit, A. Kapoor, O. M. Ntwaeaborwa, and H. C. Swart, J Appl. Phys. 114, 134506 (2013).
48. N. Guo, H. You, Y. Song, M. Yang, K. Liu, Y. Zheng, Y. Huanga, and H. Zhang, J. Mater. Chem. 20, 9061 (2010).
49. C. S. McCamy, Color Res. Appl. 17, 142 (1992).
50. Y.-C. Fang, S.-Y. Chu, P.-C. Kao, Y.-M. Chuang, and Z.-L. Zeng, J. Electrochem. Soc. 158, J1 (2011).
51.See for specific color index.
52.See for the dominant wavelength and color purity of the emitted color.
53. B. D. P. Raju and C. M. Reddy, Opt. Mater. 34, 1251 (2012).
54. S. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, England, 1963).
55. W. S. Luo, J. Liao, R. Li, and X. Chen, Phys. Chem. Chem. Phys. 12, 3276 (2010).
56. B. R. Judd, Phys. Rev. 127, 750 (1962).
57. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
58. S. Som, A. Choubey, and S. K. Sharma, J. Exp. Nanosci. (unpublished).
59. S. Som, A. Choubey, and S. K. Sharma, Physica B 407, 3515 (2012).
60. J. Feng and H. Zhang, Chem. Soc. Rev. 42, 387 (2013).
61. M. D. Marcantonatos, J. Chem. Soc., Faraday Trans. 2 82, 381 (1986).
62. Y. K. Mishra, D. K. Avasthi, P. K. Kulriya, F. Singh, D. Kabiraj, and A. Tripathi, Appl. Phys. Lett. 90, 073110 (2007).
63. Y. K. Mishra, D. Kabiraj, D. K. Avasthi, and J. C. Pivin, Radiat. Eff. Defects Solids 162, 207 (2007).

Data & Media loading...


Article metrics loading...



This paper reports on the defect correlated self-quenching and spectroscopic investigation of calcium titanate (CaTiO) phosphors. A series of CaTiO phosphors doped with trivalent europium (Eu3+) and codoped with potassium (K+) ions were prepared by the solid state reaction method. The X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure. The scanning electron microscopy images revealed the irregular morphology of the prepared phosphors consisting out of m sized diameter particles. The Eu3+ doped phosphors illuminated with ultraviolet light showed the characteristic red luminescence corresponding to the 5D7F transitions of Eu3+. As a charge compensator, K+ ions were incorporated into the CaTiO:Eu3+ phosphors, which enhanced the photoluminescence (PL) intensities depending on the doping concentration of K+. The concentration quenching of Eu3+ in this host is discussed in the light of ion-ion interaction, electron phonon coupling, and defect to ion energy transfer. The spectral characteristics and the Eu-O ligand behaviour were determined using the Judd-Ofelt theory from the PL spectra instead of the absorption spectra. The CIE (International Commission on Illumination) parameters were calculated using spectral energy distribution functions and McCamy's empirical formula. Photometric characterization indicated the suitability of K+ compensated the CaTiO:Eu3+ phosphor for pure red emission in light-emitting diode applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd