Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/19/10.1063/1.4876316
1.
1. Y.-F. Wu, Y.-T. Nien, Y.-J. Wang, and I.-G. Chen, J. Am. Ceram. Soc. 95, 1360 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2011.04967.x
2.
2. T. M. Mazzo, M. L. Moreira, I. M. Pinatti, F. C. Picon, E. R. Leite, I. L. V. Rosa, J. A. Varela, L. A. Perazolli, and E. Longo, Opt. Mater. 32, 990 (2010).
http://dx.doi.org/10.1016/j.optmat.2010.01.039
3.
3. J. Milanez, A. T. de Figueiredo, S. de Lazaro, V. M. Longo, R. Erlo, V. R. Mastelaro, R. W. A. Franco, E. Longo, and J. A. Varela, J. Appl. Phys. 106, 043526 (2009).
http://dx.doi.org/10.1063/1.3190524
4.
4. L. Panpan, Y. Jing, M. Xiaoyang, Z. Lexi, and B. Lijian, J. Rare Earths 31, 555 (2013).
http://dx.doi.org/10.1016/S1002-0721(12)60319-6
5.
5. Y. Chen, S. Patel, Y. Ye, D. Shaw, and L. Guo, Appl. Phys. Lett. 73, 2119 (1998).
http://dx.doi.org/10.1063/1.122397
6.
6. H. Takashima, K. Ueda, and M. Itoh, Appl. Phys. Lett. 89, 261915 (2006).
http://dx.doi.org/10.1063/1.2424438
7.
7. T. Kyomen, R. Sakamoto, N. Sakamoto, S. Kunugi, and M. Itoh, Chem. Mater. 17, 3200 (2005).
http://dx.doi.org/10.1021/cm0403715
8.
8. S. Dutta, S. Som, and S. K. Sharma, Dalton Trans. 42, 9654 (2013).
http://dx.doi.org/10.1039/c3dt50780g
9.
9. Y.-T. Nien, K.-M. Chen, I.-G. Chen, and T.-Y. Lin, J. Am. Ceram. Soc. 91, 3599 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02751.x
10.
10. A. K. Ambast, A. K. Kunti, S. Som, and S. K. Sharma, Appl. Opt. 52, 8424 (2013).
http://dx.doi.org/10.1364/AO.52.008424
11.
11. A. K. Ambast, J. Goutam, S. Som, and S. K. Sharma, Spectrochim. Acta, Part A 122, 93 (2014).
http://dx.doi.org/10.1016/j.saa.2013.11.032
12.
12. H. F. Kay and P. C. Bailey, Acta Crystallogr. 10, 219 (1957).
http://dx.doi.org/10.1107/S0365110X57000675
13.
13. A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, J. Vac. Sci. Technol. B 12, 781 (1994).
http://dx.doi.org/10.1116/1.587346
14.
14. S. Cho, J. Yoo, and J. Lee, J. Electrochem. Soc. 143, L231 (1996).
http://dx.doi.org/10.1149/1.1837154
15.
15. A. Purwanto, D. Hidayat, Y. Terashi, and K. Okuyama, Chem. Mater. 20, 7440 (2008).
http://dx.doi.org/10.1021/cm802524e
16.
16. S. K. Sharma, S. Dutta, S. Som, and P. S. Mandal, J. Mater. Sci. Technol. 29, 633 (2013).
http://dx.doi.org/10.1016/j.jmst.2013.03.014
17.
17. A. K. Parchur and R. S. Ningthoujam, Dalton Trans. 40, 7590 (2011).
http://dx.doi.org/10.1039/c1dt10327j
18.
18. A. K. Parchur, A. I. Prasad, S. B. Rai, and R. S. Ningthoujam, Dalton Trans. 41, 13810 (2012).
http://dx.doi.org/10.1039/c2dt32062b
19.
19. D. Y. Lu, X. Y. Sun, and M. Toda, Jpn. J. Appl. Phys., Part 1 45, 8782 (2006).
http://dx.doi.org/10.1143/JJAP.45.8782
20.
20. A. K. Parchur, R. S. Ningthoujam, S. B. Rai, G. S. Okram, R. A. Singh, M. Tyagi, S. C. Gadkari, R. Tewari, and R. K. Vatsa, Dalton Trans. 40, 7595 (2011).
http://dx.doi.org/10.1039/c1dt10878f
21.
21. Y. K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S. N. Gorb, and R. Adelung, Part. Part. Syst. Char. 30, 775 (2013).
http://dx.doi.org/10.1002/ppsc.201300197
22.
22. X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y. K. Mishra, R. Adelung, S. N. Gorb, and A. Staubitz, Adv. Mater. 24, 5676 (2012).
http://dx.doi.org/10.1002/adma.201201780
23.
23. S. Som, S. K. Sharma, and S. P. Lochab, Mater. Res. Bull. 48, 844 (2013).
http://dx.doi.org/10.1016/j.materresbull.2012.11.079
24.
24. X. Jin, M. Götz, S. Wille, Y. K. Mishra, R. Adelung, and C. Zollfrank, Adv. Mater. 25, 1342 (2013).
http://dx.doi.org/10.1002/adma.201203849
25.
25. A. E. Morales, E. S. Mora, and U. Pal, Rev. Mex. Fis. S 53(5), 18 (2007); available at www.researchgate.net/...Use_of.../79e41507eead49bb27.pdf.
26.
26. J. Tauc and A. Menth, J. Non-Cryst. Solids 8, 569 (1972).
http://dx.doi.org/10.1016/0022-3093(72)90194-9
27.
27. S. Dutta, S. Som, J. Priya, and S. K. Sharma, Solid State Sci. 18, 114 (2013).
http://dx.doi.org/10.1016/j.solidstatesciences.2013.01.012
28.
28. B.-S. Tsai, Y.-H. Chang, and Y.-C. Chen, Electrochem. Solid-State Lett. 8, H55 (2005).
http://dx.doi.org/10.1149/1.1921128
29.
29. K.-W. Huang, W.-T. Chen, C.-I. Chu, S.-F. Hu, H.-S. Sheu, B.-M. Cheng, J.-M. Chen, and R.-S. Liu, Chem. Mater. 24, 2220 (2012).
http://dx.doi.org/10.1021/cm3011327
30.
30. R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer, and H. Hahn, J. Appl. Phys. 89, 1679 (2001).
http://dx.doi.org/10.1063/1.1333033
31.
31. Y. Sun, L. Qi, M. Lee, B. I. Lee, W. D. Samuels, and G. J. Exarhos, J. Lumin. 109, 85 (2004).
http://dx.doi.org/10.1016/j.jlumin.2004.01.085
32.
32. Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, and Y.-J. Lin, J. Alloys Compd. 439, 367 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.08.269
33.
33. S. Som and S. K. Sharma, J. Phys. D: Appl. Phys. 45, 415102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/41/415102
34.
34. J. P. Rainhoa, D. Ananias, Z. Lin, A. Ferreira, L. D. Carlos, and J. Rocha, J. Alloys Compd. 374, 185 (2004).
http://dx.doi.org/10.1016/j.jallcom.2003.11.089
35.
35. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, J. Appl. Phys. 109, 053511 (2011).
http://dx.doi.org/10.1063/1.3551584
36.
36. P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, and R. Mahiou, J. Phys. D: Appl. Phys. 42, 045106 (2009).
http://dx.doi.org/10.1088/0022-3727/42/4/045106
37.
37. J. M. F. Van Dijk and M. F. H. Schuurmans, J. Chem. Phys. 78, 5317 (1983).
http://dx.doi.org/10.1063/1.445485
38.
38. H. You and G. Hong, J. Phys. Chem. Solids 60, 325 (1999).
http://dx.doi.org/10.1016/S0022-3697(98)00290-X
39.
39. B. Liu, M. Gu, X. Liu, K. Han, S. Huang, C. Ni, G. Zhang, and Z. Qi, Appl. Phys. Lett. 94, 061906 (2009).
http://dx.doi.org/10.1063/1.3079413
40.
40. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
http://dx.doi.org/10.1063/1.1699044
41.
41. G. Blasse, J. Solid State Chem. 62, 207 (1986).
http://dx.doi.org/10.1016/0022-4596(86)90233-1
42.
42. G. Blasse and B. C. Grabmarier, Luminescent Materials (Springer-Verlag, Berlin, 1994), p. 99.
43.
43. D. L. Dexter and J. H. Schulman, J. Chem. Phys. 22, 1063 (1954).
http://dx.doi.org/10.1063/1.1740265
44.
44. Q. Liu, Y. Liu, Z. Yang, Y. Han, X. Li, and G. Fu, J. Alloys Compd. 515, 16 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.114
45.
45. Q. Zhang, J. Wang, M. Zhang, W. Ding, and Q. Su, Appl. Phys. A 88, 805 (2007).
http://dx.doi.org/10.1007/s00339-007-4090-x
46.
46. S. Som, S. Dutta, V. Kumar, V. Kumar, H. C. Swart, and S. K. Sharma, J. Lumin. 146, 162 (2014).
http://dx.doi.org/10.1016/j.jlumin.2013.09.058
47.
47. V. Kumar, N. Singh, V. Kumar, L. P. Purohit, A. Kapoor, O. M. Ntwaeaborwa, and H. C. Swart, J Appl. Phys. 114, 134506 (2013).
http://dx.doi.org/10.1063/1.4824363
48.
48. N. Guo, H. You, Y. Song, M. Yang, K. Liu, Y. Zheng, Y. Huanga, and H. Zhang, J. Mater. Chem. 20, 9061 (2010).
http://dx.doi.org/10.1039/c0jm01860k
49.
49. C. S. McCamy, Color Res. Appl. 17, 142 (1992).
http://dx.doi.org/10.1002/col.5080170211
50.
50. Y.-C. Fang, S.-Y. Chu, P.-C. Kao, Y.-M. Chuang, and Z.-L. Zeng, J. Electrochem. Soc. 158, J1 (2011).
http://dx.doi.org/10.1149/1.3518782
51.
51.See http://www.hunterlab.com/appnotes/an05_05.pdf for specific color index.
52.
52.See http://www.madebydelta.com/imported/images/documents/ICAM/I103%20Dominant%20Wavelength.pdf for the dominant wavelength and color purity of the emitted color.
53.
53. B. D. P. Raju and C. M. Reddy, Opt. Mater. 34, 1251 (2012).
http://dx.doi.org/10.1016/j.optmat.2012.01.027
54.
54. S. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, England, 1963).
55.
55. W. S. Luo, J. Liao, R. Li, and X. Chen, Phys. Chem. Chem. Phys. 12, 3276 (2010).
http://dx.doi.org/10.1039/b921581f
56.
56. B. R. Judd, Phys. Rev. 127, 750 (1962).
http://dx.doi.org/10.1103/PhysRev.127.750
57.
57. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
http://dx.doi.org/10.1063/1.1701366
58.
58. S. Som, A. Choubey, and S. K. Sharma, J. Exp. Nanosci. (unpublished).
59.
59. S. Som, A. Choubey, and S. K. Sharma, Physica B 407, 3515 (2012).
http://dx.doi.org/10.1016/j.physb.2012.05.012
60.
60. J. Feng and H. Zhang, Chem. Soc. Rev. 42, 387 (2013).
http://dx.doi.org/10.1039/c2cs35069f
61.
61. M. D. Marcantonatos, J. Chem. Soc., Faraday Trans. 2 82, 381 (1986).
http://dx.doi.org/10.1039/f29868200381
62.
62. Y. K. Mishra, D. K. Avasthi, P. K. Kulriya, F. Singh, D. Kabiraj, and A. Tripathi, Appl. Phys. Lett. 90, 073110 (2007).
http://dx.doi.org/10.1063/1.2642824
63.
63. Y. K. Mishra, D. Kabiraj, D. K. Avasthi, and J. C. Pivin, Radiat. Eff. Defects Solids 162, 207 (2007).
http://dx.doi.org/10.1080/10420150601132883
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/19/10.1063/1.4876316
Loading
/content/aip/journal/jap/115/19/10.1063/1.4876316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/19/10.1063/1.4876316
2014-05-15
2016-09-30

Abstract

This paper reports on the defect correlated self-quenching and spectroscopic investigation of calcium titanate (CaTiO) phosphors. A series of CaTiO phosphors doped with trivalent europium (Eu3+) and codoped with potassium (K+) ions were prepared by the solid state reaction method. The X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure. The scanning electron microscopy images revealed the irregular morphology of the prepared phosphors consisting out of m sized diameter particles. The Eu3+ doped phosphors illuminated with ultraviolet light showed the characteristic red luminescence corresponding to the 5D7F transitions of Eu3+. As a charge compensator, K+ ions were incorporated into the CaTiO:Eu3+ phosphors, which enhanced the photoluminescence (PL) intensities depending on the doping concentration of K+. The concentration quenching of Eu3+ in this host is discussed in the light of ion-ion interaction, electron phonon coupling, and defect to ion energy transfer. The spectral characteristics and the Eu-O ligand behaviour were determined using the Judd-Ofelt theory from the PL spectra instead of the absorption spectra. The CIE (International Commission on Illumination) parameters were calculated using spectral energy distribution functions and McCamy's empirical formula. Photometric characterization indicated the suitability of K+ compensated the CaTiO:Eu3+ phosphor for pure red emission in light-emitting diode applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/19/1.4876316.html;jsessionid=t8Rr4Oy5Syh5GN5YP684Mn4a.x-aip-live-02?itemId=/content/aip/journal/jap/115/19/10.1063/1.4876316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/19/10.1063/1.4876316&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/19/10.1063/1.4876316'
Right1,Right2,Right3,