1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/23/10.1063/1.4883296
1.
1. E. Schrödinger, Phys. Rev. 28, 1049 (1926).
http://dx.doi.org/10.1103/PhysRev.28.1049
2.
2. E. Schrödinger, Ann. Phys. 385, 437 (1926).
http://dx.doi.org/10.1002/andp.19263851302
3.
3. E. Schrödinger, Ann. Phys. 384, 489 (1926).
http://dx.doi.org/10.1002/andp.19263840602
4.
4. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, San Francisco, 1975).
5.
5. O. Manasreh, Semiconductor Heterojunctions and Nanostructures (McGraw-Hill, New York, 2005).
6.
6. A. Gustavo and T. Orlando, J. Math. Chem. 37, 389 (2005).
http://dx.doi.org/10.1007/s10910-004-1105-0
7.
7. R. D. Levine, Quantum Mechanics of Molecular Rate Processes (Dover, New York, 1999).
8.
8. R. Markus, Atomistic Approaches in Modern Biology (Springer, New York, 2007).
9.
9. G. Chen, D. A. Church, B.-G. Englert, C. Henkel, B. Rohwedder, M. O. Scully, and M. S. Zubairy, Quantum Computing Devices: Principles, Designs, and Analysis (Chapman & Hall/CRC, New York, 2007).
10.
10. B. E. Baaquie, Quantum Finance (Cambridge Univ. Press, Cambridge, 2004).
11.
11. R. W. Robinet, Quantum Mechanics (Oxford Univ. Press, Oxford, 2006).
12.
12. L. M. Jones, Introduction to Mathematical Methods of Physics (Benjamin, New York, 2001).
13.
13. H. Eleuch, Y. V. Rostovtsev, and M. O. Scully, EPL 89, 50004 (2010).
http://dx.doi.org/10.1209/0295-5075/89/50004
14.
14. M. Sindelka, H. Eleuch, and Y. Rostovtsev, Eur. Phys. J. D 66, 224 (2012).
http://dx.doi.org/10.1140/epjd/e2012-30244-8
15.
15. H. Eleuch, Y. V. Rostovtsev, and M. S. Abdalla, Opt. Commun. 284, 5457 (2011).
http://dx.doi.org/10.1016/j.optcom.2011.08.011
16.
16. H. Eleuch and Y. V. Rostovtsev, J. Mod. Opt. 57, 1877 (2010).
http://dx.doi.org/10.1080/09500340.2010.514069
17.
17. O. Ozer, Chin. Phys. Lett. 25, 3111 (2008).
http://dx.doi.org/10.1088/0256-307X/25/9/005
18.
18. H. Ciftci, I. R. Hall, and N. Saad, J. Phys. A 36, 11807 (2003).
http://dx.doi.org/10.1088/0305-4470/36/47/008
19.
19. S. Flugge, Practical Quantum Mechanics (Springer, Berlin, 1974).
20.
20. S. M. Ikhdair and R. Sever, Z. Phys. D 28, 1 (1993).
http://dx.doi.org/10.1007/BF01437449
21.
21. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995).
http://dx.doi.org/10.1016/0370-1573(94)00080-M
22.
22. A. D. Alhaidari, H. A. Yamani, and M. S. Abdelmonem, Phys. Rev. A 63, 062708 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.062708
23.
23. J. Sadeghi and B. Pourhassan, EJTP 17, 193 (2008).
24.
24. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).
25.
25. M. S. Abdalla and R. K. Colegrave, Lett. IL Nuovo Cimento 39, 373 (1984).
http://dx.doi.org/10.1007/BF02787251
26.
26. M. S. Abdalla, Lett. IL Nuovo Cimento 44, 482 (1985).
http://dx.doi.org/10.1007/BF02746745
27.
27. M. S. Abdalla, Phys. Rev. A 33, 2870 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.2870
28.
28. M. S. Abdalla and R. K. Colegrave, Phys. Rev. A 32, 1958 (1985);
http://dx.doi.org/10.1103/PhysRevA.32.1958
28. M. S. Abdalla, Phys. Rev. A 34, 4598 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.4598
29.
29. C.-S. Jia, P.-Y. Lin, and L.-T. Sun, Phys. Lett. A 298, 78 (2002).
http://dx.doi.org/10.1016/S0375-9601(02)00467-X
30.
30. C. S. Jia, Y. Li, Y. Sun, J. Y. Liu, and L. T. Sun, Phys. Lett. A 311, 115 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00502-4
31.
31. J. J. Weiss, J. Chem. Phys. 41, 1120 (1964).
http://dx.doi.org/10.1063/1.1726015
32.
32. A. Cimas, M. Aschi, C. Barrientos, V. M. Rayón, J. A. Sordo, and A. Largo, Chem. Phys. Lett. 374, 594 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00771-1
33.
33. C. S. Jia, X. L. Zeng, and L. T. Sun, Phys. Lett. A 294, 185 (2002).
http://dx.doi.org/10.1016/S0375-9601(01)00840-4
34.
34. X. Zou, L. Z. Yi, and C. S. Jia, Phys. Lett. A 346, 54 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.07.075
35.
35. S. M. Ikhdair and R. Sever, Appl. Math. Comput. 218, 10082 (2012).
http://dx.doi.org/10.1016/j.amc.2012.03.073
36.
36. A. Arai, J. Math. Anal. Appl. 158, 63 (1991).
http://dx.doi.org/10.1016/0022-247X(91)90267-4
37.
37. A. Arai, J. Phys. A 34, 4281 (2001).
http://dx.doi.org/10.1088/0305-4470/34/20/302
38.
38. Q.-J. Zeng, Z. Cheng, and J.-H. i Yuan, Physica A 391, 563 (2012).
http://dx.doi.org/10.1016/j.physa.2011.09.011
39.
39. D. Bonatsos, E. N. Argyres, and P. P. Raychev, J. Phys. A 24, L403 (1991).
http://dx.doi.org/10.1088/0305-4470/24/8/003
40.
40. D. Bonatsos, P. P. Raychev, and A. Faessler, Chem. Phys. Lett. 178, 221 (1991).
http://dx.doi.org/10.1016/0009-2614(91)87060-O
41.
41. M. S. Abdalla, H. Eleuch, and T. Barakat, Rep. Math. Phys. 71, 217 (2013).
http://dx.doi.org/10.1016/S0034-4877(13)60031-2
42.
42. T. Barakat and M. S. Abdalla, J. Math. Phys. 54, 102105 (2013).
http://dx.doi.org/10.1063/1.4826358
43.
43. H. Eğrifes, D. Demirhan, and F. Büyükkiliç, Phys. Scr. 59, 90 (1999).
http://dx.doi.org/10.1238/Physica.Regular.059a00090
44.
44. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).
45.
45. J. B. Falaye, J. K. Oyewumi, and M. Abbas, Chin. Phys. B 22, 110301 (2013).
http://dx.doi.org/10.1088/1674-1056/22/11/110301
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/23/10.1063/1.4883296
Loading
/content/aip/journal/jap/115/23/10.1063/1.4883296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/23/10.1063/1.4883296
2014-06-18
2014-10-21

Abstract

In this paper, we introduce the exact solution for the wave function in the presence of potential energy, consisting of combination between -deformed hyperbolic and exponential function with different argument. The functions we have used in the present communication can be regarded as a generalization of the Arai -deformed function (modified -deformed Morse potential). In this context, we have restricted our discussion for some particular cases of the -deformed hyperbolic functions. This is due to the difficulty for dealing with most of the arguments included in the potential functions. For the most particular cases, the energy eigenfunctions are obtained, and the behavior is also discussed. It has been shown that the wave functions are sensitive to the variation in the value of -deformed parameter as well as the strength of the potential parameter λ. Furthermore, the energy eigenvalues are also considered for some particular cases where the argument of the exponential function plays a strong role effecting its value.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/23/1.4883296.html;jsessionid=2vekb58vdintm.x-aip-live-03?itemId=/content/aip/journal/jap/115/23/10.1063/1.4883296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/23/10.1063/1.4883296
10.1063/1.4883296
SEARCH_EXPAND_ITEM