Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, and L. A. Herzenberg, Clin. Chem. 48, 1819 (2002); available at
2. S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, Nat. Rev. Immunol. 4, 648 (2004).
3. P. Dalerba, S. J. Dylla, I. K. Park, R. Liu, X. Wang, R. W. Cho, T. Hoey, A. Gurney, E. H. Huang, D. M. Simeone, A. A. Shelton, G. Parmiani, C. Castelli, and M. F. Clarke, Proc. Natl. Acad. Sci. U.S.A. 104, 10158 (2007).
4. E. A. Jones, A. English, S. E. Kinsey, L. Straszynski, P. Emery, F. Ponchel, and D. McGonagle, Cytometry, Part B 70B, 391 (2006).
5. K. R. Love, S. Bagh, J. Choi, and J. C. Love, Trends Biotechnol. 31, 280 (2013).
6. H. B. Yin and D. Marshall, Curr. Opin. Biotechnol. 23, 110 (2012).
7. D. J. Wang and S. Bodovitz, Trends Biotechnol. 28, 281 (2010).
8. S. Lindstrom and H. Andersson-Svahn, Lab Chip 10, 3363 (2010).
9. M. H. Dominguez, P. K. Chattopadhyay, S. Ma, L. Lamoreaux, A. McDavid, G. Finak, R. Gottardo, R. A. Koup, and M. Roederer, J. Immunol. Methods 391, 133 (2013).
10. C. Ma, R. Fan, H. Ahmad, Q. Shi, B. Comin-Anduix, T. Chodon, R. C. Koya, C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, and J. R. Heath, Nat. Med. 17, 738 (2011).
11. M. R. Betts, M. C. Nason, S. M. West, S. C. Derosa, S. A. Migueles, J. Abraham, M. M. Lederman, J. M. Benito, P. A. Goepfert, M. Connors, M. Roederer, and R. A. Koup, Blood 107, 4781 (2006).
12. B. Lim, V. Reddy, X. Hu, K. Kim, M. Jadhav, R. Abedini-Nassab, Y. Noh, Y. T. Lim, B. B. Yellen, and C. Kim, Nat. Commun. 5, 3846 (2014).
13. J. A. Stratton, Electromagnetic Theory ( McGraw Hill Book Company, 1941).
14. M. Tejedor, H. Rubio, L. Elbaile, and R. Iglesias, IEEE Trans. Magn. 31, 830 (1995).
15. H. Chang, Br. J. Appl. Phys. 12, 160 (1961).
16. G. K. Batchelor, J. Fluid Mech. 74, 1 (1976).

Data & Media loading...


Article metrics loading...



The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd