Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
2. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
3. A. Sawa, Mater. Today 11, 28 (2008).
4. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, Appl. Phys. Lett. 82, 3032 (2003).
5. Z. Xu, Y. Bando, W. Wang, X. D. Bai, and D. Golberg, ACS Nano 4, 2515 (2010).
6. C. P. Hsiung, H. W. Liao, J. Y. Gan, T. B. Wu, J. C. Hwang, F. Chen, and M. J. Tsai, ACS Nano 4, 5414 (2010).
7. Q. Liu, S. B. Long, H. B. Lv, W. Wang, J. B. Niu, Z. L. Huo, J. N. Chen, and M. Liu, ACS Nano 4, 6162 (2010).
8. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, Appl. Phys. Lett. 91, 092110 (2007).
9. T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 22, 254013 (2011).
10. S. Kim, S.-J. Kim, K. M. Kim, S. R. Lee, M. Chang, E. Cho, Y.-B. Kim, C. J. Kim, U.-I. Chung, and I.-K. Yoo, Sci. Rep. 3, 1680 (2013).
11. S. Balatti, S. Larentis, D. C. Gilmer, and D. Lelmini, Adv. Mater. 25, 1474 (2013).
12. T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Nanotechnology 23, 435705 (2012).
13. J. Park, W. Lee, M. Choe, S. Jung, M. Son, S. Kim, S. Park, J. Shin, D. Lee, M. Siddik, J. Woo, G. Choi, E. Cha, T. Lee, and H. Hwang, in Electron Devices Meeting (2011), p. 37.
14. Z. C. Wang, T. Kadohira, T. Tada, and S. Watanabe, Nano Lett. 7, 2688 (2007).
15. Z. C. Wang, T. K. Gu, T. Tada, and S. Watanabe, Appl. Phys. Lett. 93, 152106 (2008).
16. T. K. Gu, Z. C. Wang, T. Tada, and S. Watanabe, J. Appl. Phys. 106, 103713 (2009).
17. T. K. Gu, T. Tada, and S. Watanabe, ACS Nano 4, 6477 (2010).
18. N. Kim and J. F. Stebbins, Chem. Mater. 23, 3460 (2011).
19. T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. H. Guo, and S. Yamaguchi, Phys. Chem. Chem. Phys. 13, 17013 (2011).
20. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
21. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
22. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
23. Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
24. M. Brandbyge, J. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
26. R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. Maclaren, and S. Rowan, Appl. Phys. Lett. 98, 031904 (2011).
27.In evaluating the coordination numbers of Ta and O atoms in the a-Ta2O5, the Ta-O pair is regarded as bonded when the distance between them is smaller than the sum of the covalent radii (Ta = 1.70 Å and O = 0.73 Å) plus a tolerance factor of 0.10 Å.
28. Y. N. Wu, L. Li, and H. P. Cheng, Phys. Rev. B 83, 144105 (2011).
29. X. M. Wu, S. R. Soss, E. J. Rymaszewski, and T. M. Lu, Mater. Chem. Phys. 38, 297 (1994).
30. D. R. M. Crooks, P. Sneddon, G. Cagnoli, J. Hough, S. Rowan, M. M. Fejer, E. Gustafson, R. Route, N. Nakagawa, D. Coyne, G. M. Harry, and A. M. Gretarsson, Class. Quantum. Grav. 19, 4229 (2002).
31. S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, G. M. Harry, J. Hough, S. E. Kittelberger, M. J. Mortonson, R. Route, S. Rowan, and C. C. Vassiliou, Class. Quantum. Grav. 20, 2917 (2003).
32.See supplementary material at for the structural parameters and electronic properties of amorphous Ta2O5 (a-Ta2O5) with various densities (8.11 and 7.68 g/cm3,) and quenching rates (4K/3fs, 2K/3fs, and 0.1K/3fs), the structure and density of state (DOS) of the single Cu chain in δ-Ta2O5, the DOS and partial charge density for the structures with various Cu filaments (i.e., single Cu chain, trigonal or tetragonal packed Cu nanowires, the thinnest Cu nanowire) in a-Ta2O5. [Supplementary Material]
33. T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 21, 425205 (2010).
34. B. L. Wang, J. J. Zhao, X. H. Chen, D. N. Shi, and G. H. Wang, Nanotechnology 17, 3178 (2006).
35. J. C. Gonzalez, V. Rodrigues, J. Bettini, L. G. C. Rego, A. R. Rocha, P. Z. Coura, S. O. Dantas, F. Sato, D. S. Galvao, and D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004).
36. Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, J. P. Lu, P. V. R. Schleyer, and C. K. Yang, J. Phys. Chem. B 110, 2529 (2006).

Data & Media loading...


Article metrics loading...



We have examined the structure of Cu filaments in Cu/amorphous-TaO (a-TaO)/Pt atomic switch from first principles. We have found that the Cu single atomic chains are unstable during the molecular dynamics (MD) simulation and thus cannot work as conduction paths. On the other hand, Cu nanowires with various diameters are stable and can form conductive paths. In this case, the Cu-Cu bonding mainly contributes to the conductive, delocalized defect state. These make a sharp contrast with the case of single Cu chains in crystalline Ta O, which can be conductive paths through the alternant Cu-Ta bonding structure. A series of MD simulations suggest that even Cu nanowires with a diameter of 0.24 nm can work as conduction paths. The calculations of the transport properties of Cu/a-TaO/Pt heterostructures with Cu nanowires between two electrodes further confirm the conductive nature of the Cu nanowires in the a-TaO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd