Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/3/10.1063/1.4862277
1.
1. B. W. Reed, J. R. Patterson, D. C. Swift, J. S. Stolken, R. W. Minich, and M. Kumar, J. Appl. Phys. 110, 113505 (2011).
http://dx.doi.org/10.1063%2F1.3653821
2.
2. B. W. Reed, J. S. Stolken, R. W. Minich, and M. Kumar, J. Appl. Phys. 110, 113506 (2011).
http://dx.doi.org/10.1063%2F1.3662173
3.
3. J. L. Wise and D. E. Mikkola, in Shock Waves in Condensed Matter – 1987, edited by S. C. Schmidt and N. C. Holmes (Elsevier, 1988), pp. 261264.
4.
4. S. H. Huang, X. G. Jin, Z. R. Li, X. A. Wang, and K. Guan, AIP Conf. Proc. 309, 1083 (1994).
http://dx.doi.org/10.1063/1.46293
5.
5. G. Whiteman and J. C. F. Millett, Exp. Mech. 52, 265 (2012).
http://dx.doi.org/10.1007/s11340-011-9487-y
6.
6.See supplementary material at http://dx.doi.org/10.1063/1.4862277 for machine-readable waveforms and plots. [Supplementary Material]
7.
7. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 41, 4208 (1970).
http://dx.doi.org/10.1063/1.1658439
8.
8. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
http://dx.doi.org/10.1063/1.2336749
9.
9. R. Fowles and R. F. Williams, J. Appl. Phys. 41, 360 (1970).
http://dx.doi.org/10.1063/1.1658348
10.
10. R. E. Setchell, J. Appl. Phys. 50, 8186 (1979).
http://dx.doi.org/10.1063/1.325959
11.
11. J. L. Wise and L. C. Chhabildas, in Shock Waves in Condensed Matter, edited by Y. M. Gupta (Plenum, 1986), pp. 441454.
12.
12. M. D. Furnish, C. S. Alexander, J. L. Brown, and W. D. Reinhart, Sandia National Laboratories Report, SAND2012-9770, Sandia National Laboratories, Albuquerque, NM 87185, 2012.
13.
13. H. Huang and J. R. Asay, L. C. J. Appl. Phys. 98, 033524 (2005).
http://dx.doi.org/10.1063/1.2001729
14.
14. L. C. Chhabildas, J. L. Wise, and J. R. Asay, AIP Conf. Proc. 78, 422 (1982).
http://dx.doi.org/10.1063/1.33351
15.
15. T. J. Vogler and L. C. Chhabildas, Int. J. Impact Eng. 33, 812 (2006).
http://dx.doi.org/10.1016/j.ijimpeng.2006.09.069
16.
16. J. L. Brown, C. S. Alexander, J. R. Asay, T. J. Vogler, and J. Ding, J. Appl. Phys. 114, 223518 (2013).
http://dx.doi.org/10.1063%2F1.4847535
17.
17. J. R. Asay and L. C. Chhabildas, in Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, edited by M. A. Meyers and L. E. Murr (Plenum, 1981), pp. 417431.
18.
18. W. D. Reinhart and L. C. Chhabildas, Int. J. Impact Eng. 29, 601 (2003).
http://dx.doi.org/10.1016/j.ijimpeng.2003.10.008
19.
19.This code implements the incremental impedance matching methods described in Vogler et al.15 and Lipkin and Asay.20
20.
20. J. Lipkin and J. R. Asay, J. Appl. Phys. 48, 182 (1977).
http://dx.doi.org/10.1063/1.323306
21.
21. L. Davison, Fundamentals of Shock Wave Propagation in Solids (Springer-Verlag, 2008).
22.
22. D. J. Steinberg, Lawrence Livermore National Laboratories Report, UCRL-MA-106439 (change 1), Lawrence Livermore National Laboratories, Livermore, CA 94550, 1996.
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/3/10.1063/1.4862277
Loading
/content/aip/journal/jap/115/3/10.1063/1.4862277
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/3/10.1063/1.4862277
2014-01-17
2016-09-27

Abstract

In support of efforts to develop multiscale models of a variety of materials, we have performed a set of eleven gas gun impact experiments on 2169 steel, a high-strength austenitic stainless steel. These experiments provided carefully controlled shock, reshock, and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa. Both windowed and free-surface measurements on samples ranging in thickness from 1 to 5 mm were made to increase the utility of the data set. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release/reshock paths (windowed and free-surface), with associated strength information. The Hugoniot is nearly linear in space. Reshock tests with explosively welded impactors produced clean results, by contrast with earlier reshock tests with glued impactors which showed gap signatures. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A preliminary strength analysis suggests the flow strength increases with stress from ∼1 GPa to ∼2.5 GPa over this range, consistent with other recent work but about 25% above the Steinberg model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/3/1.4862277.html;jsessionid=oMtmcy8-buCcD64HtDx8wENM.x-aip-live-06?itemId=/content/aip/journal/jap/115/3/10.1063/1.4862277&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/3/10.1063/1.4862277&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/3/10.1063/1.4862277'
Right1,Right2,Right3,