Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.See the press release for this new world record:
2. S. Siebentritt, L. Gütay, D. Regesch, Y. Aida, and V. Deprédurand, Sol. Energie Matter Sol. cells 119, 1825 (2013).
3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics 19(7), 894897 (2011).
4. M. Turcu, O. Pakma, and U. Rau, Appl. Phys. Lett. 80, 25982600 (2002).
5. T. Gödecke, T. Haalboom, and F. Ernst, Z. Metall. 91, 622634 (2000).
6. M. L. Fearheiley, Sol. Cells 16, 91100 (1986).
7. Y. Hashimoto, N. Kohara, T. Negami, M. Nishitani, and T. Wada, Jpn. J. Appl. Phys., Part 1 35, 4760 (1996).
8. S. Siebentritt, N. Rega, A. Zajogin, and M. Ch. Lux-Steiner, in Conf. on photoresp. Mat., Kariega, PSSC (2004), Vol. 1, p. 2304.
9. I. Dirnstorfer, M. Wagner, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, Phys. Status Solidi A 168, 163 (1998).<163::AID-PSSA163>3.0.CO;2-T
10. A. Bauknecht, S. Siebentritt, J. Albert, and M. Ch. Lux-Steiner, J. Appl. Phys. 89(8), 4391 (2001).
11. J. K. Larsen, K. Burger, L. Gütay, and S. Siebentritt, in 37th IEEE Photovoltaics Specialist Conference Proceeding, Seattle (2011), p. 396.
12. S. Siebentritt, A. Gerhard, S. Brehme, and M. Ch. Lux-Steiner, in Materials Research Society Symposium Proceedings (2001), Vol. 668.
13. L. Gütay, D. Regesch, J. Larsen, Y. Aida, V. Depredurand, and S. Siebentritt, Appl. Phys. Lett. 99, 151912 (2011).
14. V. Deprédurand, Y. Aida, J. Larsen, and S. Siebentritt, in 37th IEEE Photovoltaic Specialist Conference Proceeding, Seattle (2011), p. 337.
15. J. A. M. AbuShama, R. Noufi, S. Johnston, J. Ward, and X. Wu, in Proceedings 31st IEEE PVSC Conference (2005), pp. 299302.
16. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, Appl. Phys. Lett. 65, 198200 (1994).
17. R. Klenk, T. Walter, H. W. Schock, and D. Cahen, Adv. Mater. 5, 114119 (1993).
18. A. R. Burgers, J. A. Eikelboom, A. Schönecker, and W. C. Sinke, in Proceedings 25-th IEEE PVSC Conference, Washington DC (1996), pp. 569572.
19. L. Gütay, D. Regesch, J. K. Larsen, Y. Aida, V. Depredurand, A. Redinger, S. Caneva, S. Schorr, C. Stephan, S. Botti, J. Vidal, and S. Siebentritt, Phys. Rev. B 86, 045216 (2012).
20. J. E. Jaffe and A. Zunger, Phys. Rev. B 29(4), 18821906 (1984).
21. D. Abou-Ras, T. Kirchartz, and U. Rau, Advanced Characterization Techniques for Thin Film Solar Cells (WILEY-VCH Verlag GmbH & Co., 2011), p. 86.
22. R. Klenk and H. W. Schock, in Proceedings of the 12th European Photovoltaic Solar Energy Conference (1994), p.
23. R. Scheer and H. W. Schock, Chlcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (WILEY-VCH Verlag GmbH & Co., 2011).
24. J. I. Pankove, Optical Processess in Semiconductors (Dover Publications, New York, 1971).
25. A. Gerhard, W. Harneit, S. Brehme, A. Bauknecht, U. Fiedeler, M. Ch. Lux-Steiner, and S. Siebentritt, Thin Solid Films 387(1–2), 6770 (2001).
26. S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57(16), 96429656 (1998).
27. J. Pohl and K. Albe, Phys. Rev. B 87(24), 245203 (2013).
28. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527532 (2000).
29. A. Rockett, Thin Solid Films 480–481, 509 (2005).
30. M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, in The Conference Record of the 26th IEEE Photovoltaic Specialists Conference IEEE, New York (1997), p. 359.
31. S. Schuler, S. Siebentritt, S. Nishiwaki, N. Rega, J. Beckmann, S. Brehme, and M. Ch. Lux-Steiner, Phys. Rev. B 69, 045210 (2004).
32. S. B. Zhang, S.-H. Wei, and A. Zunger, J. Appl. Phys. 83, 3192 (1998).
33. S.-H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electronical and structural properties of CuInSe2,” J. Appl. Phys. 85(10), 7214 (1999).

Data & Media loading...


Article metrics loading...



The absorbers in Cu(In,Ga)Se solar cells in general are Cu-poor. However, better transport properties and lower bulk recombination in “Cu-rich” material led us to develop “Cu-rich” CuInSe solar cells. We expect higher diffusion lengths and better carrier lifetimes for “Cu-rich” CuInSe solar cells, resulting in a higher short circuit current of “Cu-rich” solar cells, compared to Cu-poor ones. However, recent investigations show that the current is lower for absorbers grown under Cu-excess compared to Cu-poor absorbers. Therefore, this work investigates both “Cu-rich” and Cu-poor CuInSe absorbers, as well as their resulting cells, in order to understand why the “Cu-rich” CuInSe solar cells do not show the expected increase in current. While this contribution gives proof that “Cu-rich” based solar cells in fact do have better carrier collection properties, one limitation of “Cu-rich” devices is a very short space charge width associated with a higher doping level. We suggest tunneling enhanced recombination in the space charge region as the most likely cause of the loss in current. This work shows also that the high doping level of the “Cu-rich” film cannot be decreased by controlling the sodium supply.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd