1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermal transport through short-period SiGe nanodot superlattices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/4/10.1063/1.4863115
1.
1. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mate. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
2.
2. C. B. Vining, Nature Mater. 8, 83 (2009).
http://dx.doi.org/10.1038/nmat2361
3.
3. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
4.
4. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
5.
5. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
6.
6. M. Zebarjadi, G. Joshi, G. Zhu, G. B. Yu, A. Minnich, Y. Lan, X. Wang, M. S. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).
http://dx.doi.org/10.1021/nl201206d
7.
7. G. Fiedler and P. Kratzer, New J. Phys. 15, 125010 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/125010
8.
8. T. Koga, S. B. Cornin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000).
http://dx.doi.org/10.1063/1.1308271
9.
9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
10.
10. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).
http://dx.doi.org/10.1021/nl8026795
11.
11. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).
http://dx.doi.org/10.1038/nature11439
12.
12. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013).
http://dx.doi.org/10.1063/1.4811228
13.
13. L. F. Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. M. Gubler, D. Chrastina, G. Isella, J. Stangl, J. M. R. Weaver, P. S. Dobson, and D. J. Paul, Appl. Phys. Lett. 103, 143507 (2013).
http://dx.doi.org/10.1063/1.4824100
14.
14. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).
http://dx.doi.org/10.1063/1.118755
15.
15. S. T. Huxtable, A. R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).
http://dx.doi.org/10.1063/1.1455693
16.
16. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045901
17.
17. M. L. Lee and R. Venkatasubramanian, Appl. Phys. Lett. 92, 053112 (2008).
http://dx.doi.org/10.1063/1.2842388
18.
18. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, Nature Mater. 9, 491 (2010).
http://dx.doi.org/10.1038/nmat2752
19.
19. J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.140302
20.
20. O. G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett.75, 1905 (1999).
http://dx.doi.org/10.1063/1.124867
21.
21. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.055503
22.
22. J. J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R. O. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 085502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.085502
23.
23. U. Denker, H. Sigg, and O. G. Schmidt, Mater. Sci. Eng. B 101, 89 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00660-8
24.
24. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
http://dx.doi.org/10.1116/1.581422
25.
25. O. Moutanabbir and U. Gösele, Annu. Rev. Mater. Res. 40, 469 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104448
26.
26. A. Tarun, N. Hayazawa, H. Ishitobi, S. Kawata, M. Reiche, and O. Moutanabbir, Nano Lett. 11, 4780 (2011).
http://dx.doi.org/10.1021/nl202599q
27.
27. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
http://dx.doi.org/10.1063/1.1141498
28.
28. D. G. Cahill, M. Kativar, and J. R. Abelson, Phys. Rev. B 50, 6077 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.6077
29.
29. T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum. 72, 2139 (2001).
http://dx.doi.org/10.1063/1.1353189
30.
30. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105, 054303 (2009).
http://dx.doi.org/10.1063/1.3078808
31.
31. J. L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, and D. P. Yu, J. Cryst. Growth 227–228, 1111 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00998-8
32.
32. A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, and J. Meusel, J. Appl. Phys. 91, 4733 (2002).
http://dx.doi.org/10.1063/1.1459611
33.
33. S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81, 2590 (1997).
http://dx.doi.org/10.1063/1.363923
34.
34. Z. Wang and N. Mingo, Appl. Phys. Lett. 97, 101903 (2010).
http://dx.doi.org/10.1063/1.3486171
35.
35. D. J. Godbey and M. G. Ancona, J. Vac. Sci. Technol. A 15, 976 (1997).
http://dx.doi.org/10.1116/1.580790
36.
36. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, N. Hrauda, W. Jantsch, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 93, 121901 (2008).
http://dx.doi.org/10.1063/1.2988261
37.
37. P. Chen, N. A. Katcho, J. P. Feser, W. Li, M. Glaser, O. G. Schmidt, D. G. Cahill, N. Mingo, and A. Rastelli, Phys. Rev. Lett. 111, 115901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.115901
38.
38. J. J. Zhang, N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schäffler, O. G. Schmidt, and G. Bauer G, Appl. Phys. Lett. 96, 193101 (2010).
http://dx.doi.org/10.1063/1.3425776
39.
39. A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K. Kern, T. H. Metzger, and O. G. Schmidt, Nano Lett. 8, 1404 (2008).
http://dx.doi.org/10.1021/nl080290y
40.
40. M. Stoffel, A. Malachias, T. Merdzhanova1, F. Cavallo, G. Isella, D. Chrastina, H. von Känel, A. Rastelli, and O. G. Schmidt, Semicond. Sci.Technol. 23, 085021 (2008).
http://dx.doi.org/10.1088/0268-1242/23/8/085021
41.
41. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Mueller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Bimer, V. Holy, and G. Bauer, Nano Lett. 7, 3150 (2007).
http://dx.doi.org/10.1021/nl0717199
42.
42. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205321
43.
43. M. Kummer, B. Vögeli, and H. von Känel, Mater. Sci. Eng. B 69, 247 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00304-9
44.
44. C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
http://dx.doi.org/10.1063/1.337642
45.
45. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).
http://dx.doi.org/10.1063/1.1819431
46.
46. J. P. Feser, J. S. Sadhu, B. P. Azeredo, K. H. Hsu, J. Ma, J. Kim, M. Seong, N. X. Fang, X. Li, P. M. Ferreira, S. Sinha, and D. G. Cahill, J. Appl. Phys. 112, 114306 (2012).
http://dx.doi.org/10.1063/1.4767456
47.
47. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).
http://dx.doi.org/10.1021/nl8031982
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/4/10.1063/1.4863115
Loading
/content/aip/journal/jap/115/4/10.1063/1.4863115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/4/10.1063/1.4863115
2014-01-30
2014-09-17

Abstract

The cross-plane thermal conductivity κ of multilayers of SiGe nanodots separated either by Si or SiGe can be decreased by reducing the period length or by increasing the nanodot density. It is, however, not clear how far κ can be reduced by using these strategies. In addition, the role of SiGe nanodots on the reduction of κ is still not fully understood. In this work, we addressed these issues by studying experimentally the cross-plane κ of Ge/Si superlattices with period lengths down to 1.5 nm. Although κ tends to preserve the decreasing trend with reducing the period length, for periods shorter than 2 nm we observed a drastic drop of the average thermal resistance per period. This finding indicates a weakening of the effect of the interfaces on phonon scattering and implies a lower limit for κ. To assess the role played by the nanodots in the reduction of κ we studied Ge/Si superlattices with nanodot densities varying from 0 to ∼8×1010 cm−2 and a fixed Si spacer thickness of 2.7 nm. The experimental results suggest that SiGe nanodots with ‘‘pyramid’’-shape have an effect comparable to nominally planar wetting layers on the cross-plane thermal transport. Finally, the comparison of superlattices with nanodots separated by Si Ge (with x from 0 to 0.2) shows that spacer alloying is beneficial in reducing the κ by ∼20%. The results presented in this work are expected to be relevant to micro/nanoscale energy conversion which requires minimizing the thermal conductivity of superlattice-based thin film thermoelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/4/1.4863115.html;jsessionid=3cjjfj4i31of8.x-aip-live-03?itemId=/content/aip/journal/jap/115/4/10.1063/1.4863115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal transport through short-period SiGe nanodot superlattices
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/4/10.1063/1.4863115
10.1063/1.4863115
SEARCH_EXPAND_ITEM