NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Thermal transport through short-period SiGe nanodot superlattices
Rent this article for
Access full text Article
1. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mate. 19, 1043 (2007).
2. C. B. Vining, Nature Mater. 8, 83 (2009).
3. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
4. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
5. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
6. M. Zebarjadi, G. Joshi, G. Zhu, G. B. Yu, A. Minnich, Y. Lan, X. Wang, M. S. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).
7. G. Fiedler and P. Kratzer, New J. Phys. 15, 125010 (2013).
8. T. Koga, S. B. Cornin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000).
9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
10. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).
11. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).
12. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013).
13. L. F. Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. M. Gubler, D. Chrastina, G. Isella, J. Stangl, J. M. R. Weaver, P. S. Dobson, and D. J. Paul, Appl. Phys. Lett. 103, 143507 (2013).
14. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).
15. S. T. Huxtable, A. R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).
16. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).
17. M. L. Lee and R. Venkatasubramanian, Appl. Phys. Lett. 92, 053112 (2008).
18. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, Nature Mater. 9, 491 (2010).
19. J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).
20. O. G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett.75, 1905 (1999).
21. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
22. J. J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R. O. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 085502 (2012).
23. U. Denker, H. Sigg, and O. G. Schmidt, Mater. Sci. Eng. B 101, 89 (2003).
24. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
25. O. Moutanabbir and U. Gösele, Annu. Rev. Mater. Res. 40, 469 (2010).
26. A. Tarun, N. Hayazawa, H. Ishitobi, S. Kawata, M. Reiche, and O. Moutanabbir, Nano Lett. 11, 4780 (2011).
27. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
28. D. G. Cahill, M. Kativar, and J. R. Abelson, Phys. Rev. B 50, 6077 (1994).
29. T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum. 72, 2139 (2001).
30. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105, 054303 (2009).
31. J. L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, and D. P. Yu, J. Cryst. Growth 227–228, 1111 (2001).
32. A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, and J. Meusel, J. Appl. Phys. 91, 4733 (2002).
33. S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81, 2590 (1997).
34. Z. Wang and N. Mingo, Appl. Phys. Lett. 97, 101903 (2010).
35. D. J. Godbey and M. G. Ancona, J. Vac. Sci. Technol. A 15, 976 (1997).
36. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, N. Hrauda, W. Jantsch, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 93, 121901 (2008).
37. P. Chen, N. A. Katcho, J. P. Feser, W. Li, M. Glaser, O. G. Schmidt, D. G. Cahill, N. Mingo, and A. Rastelli, Phys. Rev. Lett. 111, 115901 (2013).
38. J. J. Zhang, N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schäffler, O. G. Schmidt, and G. Bauer G, Appl. Phys. Lett. 96, 193101 (2010).
39. A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K. Kern, T. H. Metzger, and O. G. Schmidt, Nano Lett. 8, 1404 (2008).
40. M. Stoffel, A. Malachias, T. Merdzhanova1, F. Cavallo, G. Isella, D. Chrastina, H. von Känel, A. Rastelli, and O. G. Schmidt, Semicond. Sci.Technol. 23, 085021 (2008).
41. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Mueller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Bimer, V. Holy, and G. Bauer, Nano Lett. 7, 3150 (2007).
42. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
43. M. Kummer, B. Vögeli, and H. von Känel, Mater. Sci. Eng. B 69, 247 (2000).
44. C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
45. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).
46. J. P. Feser, J. S. Sadhu, B. P. Azeredo, K. H. Hsu, J. Ma, J. Kim, M. Seong, N. X. Fang, X. Li, P. M. Ferreira, S. Sinha, and D. G. Cahill, J. Appl. Phys. 112, 114306 (2012).
47. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).

Data & Media loading...


Article metrics loading...



The cross-plane thermal conductivity κ of multilayers of SiGe nanodots separated either by Si or SiGe can be decreased by reducing the period length or by increasing the nanodot density. It is, however, not clear how far κ can be reduced by using these strategies. In addition, the role of SiGe nanodots on the reduction of κ is still not fully understood. In this work, we addressed these issues by studying experimentally the cross-plane κ of Ge/Si superlattices with period lengths down to 1.5 nm. Although κ tends to preserve the decreasing trend with reducing the period length, for periods shorter than 2 nm we observed a drastic drop of the average thermal resistance per period. This finding indicates a weakening of the effect of the interfaces on phonon scattering and implies a lower limit for κ. To assess the role played by the nanodots in the reduction of κ we studied Ge/Si superlattices with nanodot densities varying from 0 to ∼8×1010 cm−2 and a fixed Si spacer thickness of 2.7 nm. The experimental results suggest that SiGe nanodots with ‘‘pyramid’’-shape have an effect comparable to nominally planar wetting layers on the cross-plane thermal transport. Finally, the comparison of superlattices with nanodots separated by Si Ge (with x from 0 to 0.2) shows that spacer alloying is beneficial in reducing the κ by ∼20%. The results presented in this work are expected to be relevant to micro/nanoscale energy conversion which requires minimizing the thermal conductivity of superlattice-based thin film thermoelectrics.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal transport through short-period SiGe nanodot superlattices