Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mate. 19, 1043 (2007).
2. C. B. Vining, Nature Mater. 8, 83 (2009).
3. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
4. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
5. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
6. M. Zebarjadi, G. Joshi, G. Zhu, G. B. Yu, A. Minnich, Y. Lan, X. Wang, M. S. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).
7. G. Fiedler and P. Kratzer, New J. Phys. 15, 125010 (2013).
8. T. Koga, S. B. Cornin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000).
9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
10. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).
11. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).
12. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013).
13. L. F. Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. M. Gubler, D. Chrastina, G. Isella, J. Stangl, J. M. R. Weaver, P. S. Dobson, and D. J. Paul, Appl. Phys. Lett. 103, 143507 (2013).
14. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).
15. S. T. Huxtable, A. R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).
16. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).
17. M. L. Lee and R. Venkatasubramanian, Appl. Phys. Lett. 92, 053112 (2008).
18. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, Nature Mater. 9, 491 (2010).
19. J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).
20. O. G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett.75, 1905 (1999).
21. G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J. Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503 (2012).
22. J. J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R. O. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 085502 (2012).
23. U. Denker, H. Sigg, and O. G. Schmidt, Mater. Sci. Eng. B 101, 89 (2003).
24. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
25. O. Moutanabbir and U. Gösele, Annu. Rev. Mater. Res. 40, 469 (2010).
26. A. Tarun, N. Hayazawa, H. Ishitobi, S. Kawata, M. Reiche, and O. Moutanabbir, Nano Lett. 11, 4780 (2011).
27. D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
28. D. G. Cahill, M. Kativar, and J. R. Abelson, Phys. Rev. B 50, 6077 (1994).
29. T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Rev. Sci. Instrum. 72, 2139 (2001).
30. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, J. Appl. Phys. 105, 054303 (2009).
31. J. L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, and D. P. Yu, J. Cryst. Growth 227–228, 1111 (2001).
32. A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, and J. Meusel, J. Appl. Phys. 91, 4733 (2002).
33. S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81, 2590 (1997).
34. Z. Wang and N. Mingo, Appl. Phys. Lett. 97, 101903 (2010).
35. D. J. Godbey and M. G. Ancona, J. Vac. Sci. Technol. A 15, 976 (1997).
36. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, N. Hrauda, W. Jantsch, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 93, 121901 (2008).
37. P. Chen, N. A. Katcho, J. P. Feser, W. Li, M. Glaser, O. G. Schmidt, D. G. Cahill, N. Mingo, and A. Rastelli, Phys. Rev. Lett. 111, 115901 (2013).
38. J. J. Zhang, N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schäffler, O. G. Schmidt, and G. Bauer G, Appl. Phys. Lett. 96, 193101 (2010).
39. A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K. Kern, T. H. Metzger, and O. G. Schmidt, Nano Lett. 8, 1404 (2008).
40. M. Stoffel, A. Malachias, T. Merdzhanova1, F. Cavallo, G. Isella, D. Chrastina, H. von Känel, A. Rastelli, and O. G. Schmidt, Semicond. Sci.Technol. 23, 085021 (2008).
41. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Mueller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Bimer, V. Holy, and G. Bauer, Nano Lett. 7, 3150 (2007).
42. M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Phys. Rev. B 80, 205321 (2009).
43. M. Kummer, B. Vögeli, and H. von Känel, Mater. Sci. Eng. B 69, 247 (2000).
44. C. A. Paddock and G. L. Eesley, J. Appl. Phys. 60, 285 (1986).
45. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).
46. J. P. Feser, J. S. Sadhu, B. P. Azeredo, K. H. Hsu, J. Ma, J. Kim, M. Seong, N. X. Fang, X. Li, P. M. Ferreira, S. Sinha, and D. G. Cahill, J. Appl. Phys. 112, 114306 (2012).
47. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).

Data & Media loading...


Article metrics loading...



The cross-plane thermal conductivity κ of multilayers of SiGe nanodots separated either by Si or SiGe can be decreased by reducing the period length or by increasing the nanodot density. It is, however, not clear how far κ can be reduced by using these strategies. In addition, the role of SiGe nanodots on the reduction of κ is still not fully understood. In this work, we addressed these issues by studying experimentally the cross-plane κ of Ge/Si superlattices with period lengths down to 1.5 nm. Although κ tends to preserve the decreasing trend with reducing the period length, for periods shorter than 2 nm we observed a drastic drop of the average thermal resistance per period. This finding indicates a weakening of the effect of the interfaces on phonon scattering and implies a lower limit for κ. To assess the role played by the nanodots in the reduction of κ we studied Ge/Si superlattices with nanodot densities varying from 0 to ∼8×1010 cm−2 and a fixed Si spacer thickness of 2.7 nm. The experimental results suggest that SiGe nanodots with ‘‘pyramid’’-shape have an effect comparable to nominally planar wetting layers on the cross-plane thermal transport. Finally, the comparison of superlattices with nanodots separated by Si Ge (with x from 0 to 0.2) shows that spacer alloying is beneficial in reducing the κ by ∼20%. The results presented in this work are expected to be relevant to micro/nanoscale energy conversion which requires minimizing the thermal conductivity of superlattice-based thin film thermoelectrics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd