1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
HBr/O2 plasma treatment followed by a bake for photoresist linewidth roughness smoothing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/115/7/10.1063/1.4865799
1.
1. T. D. Linton, S. Yu, and R. Shaheed, VLSI Des. 13, 103 (2001).
http://dx.doi.org/10.1155/2001/43502
2.
2. A. Asenov, S. Kaya, and A. R. Brown, IEEE Trans. Electron Devices 50, 1254 (2003).
http://dx.doi.org/10.1109/TED.2003.813457
3.
3. D. L. Goldfarb, A. P. Mahorowala, G. M. Gallatin, K. E. Petrillo, K. Temple, M. Angelopoulos, S. Rasgon, H. H. Sawin, S. D. Allen, M. C. Lawson, and R. W. Kwong, J. Vac. Sci. Technol. B 22, 647 (2004).
http://dx.doi.org/10.1116/1.1667513
4.
4. E. Pargon, M. Martin, J. Thiault, O. Joubert, J. Foucher, and T. Lill, J. Vac. Sci. Technol. B 26, 1011 (2008).
http://dx.doi.org/10.1116/1.2917071
5.
5. L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, O. Joubert, P. Gouraud, and C. Verove, J. Vac. Sci. Technol. B 31, 012205 (2013).
http://dx.doi.org/10.1116/1.4773063
6.
6. M. Fouchier, E. Pargon, and B. Bardet, J. Appl. Phys. 113, 104903 (2013).
http://dx.doi.org/10.1063/1.4794368
7.
7.See http://www.itrs.net/Links/2011ITRS/Home2011.htm for the international technology roadmap for semiconductors, 2011 edition.
8.
8. A. P. Mahorowala, K. J. Chen, R. Sooriyakumaran, A. Clancy, D. Murthy, and S. Rasgon, Proc. SPIE 5753, 380 (2005).
http://dx.doi.org/10.1117/12.600043
9.
9. H. Kawahira, N. Matsuzawa, E. Matsui, A. Ando, K. Salam, M. Yoshida, Y. Yamaguchi, K. Kugimiya, T. Tatsumi, H. Nakano, T. Iwai, and M. Irie, Proc. SPIE 6153, 615319 (2006).
http://dx.doi.org/10.1117/12.656002
10.
10. M.-C. Kim, D. Shamiryan, Y. Jung, W. Boullart, C.-J. Kang, and H.-K. Cho, J. Vac. Sci. Technol. B 24, 2645 (2006).
http://dx.doi.org/10.1116/1.2366616
11.
11. E. Pargon, M. Martin, K. Menguelti, L. Azarnouche, J. Foucher, and O. Joubert, Appl. Phys. Lett. 94, 103111 (2009).
http://dx.doi.org/10.1063/1.3094128
12.
12. E. Pargon, K. Menguelti, M. Martin, A. Bazin, O. Chaix-Pluchery, C. Sourd, S. Derrough, T. Lill, and O. Joubert, J. Appl. Phys. 105, 094902 (2009).
http://dx.doi.org/10.1063/1.3116504
13.
13. M. J. Titus, D. B. Graves, Y. Yamaguchi, and E. A. Hudson, J. Phys. D: Appl. Phys. 44, 085204 (2011).
http://dx.doi.org/10.1088/0022-3727/44/8/085204
14.
14. E. Pargon, L. Azarnouche, M. Fouchier, K. Menguelti, R. Tiron, C. Sourd, and O. Joubert, Plasma Processes Polym. 8, 1184 (2011).
http://dx.doi.org/10.1002/ppap.201100107
15.
15. A. V. Pret, R. Gronheid, and P. Foubert, J. Micro/Nanolithogr., MEMS MOEMS 9, 041203 (2010).
http://dx.doi.org/10.1117/1.3494614
16.
16. A. V. Pret, R. Gronheid, T. Vandeweyer, and T. Ishimoto, Microelectron. Eng. 87, 1127 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.038
17.
17. I. W. Cho, H. Kim, J.-H. You, and H.-K. Oh, Jpn. J. Appl. Phys. 49, 036502 (2010).
http://dx.doi.org/10.1143/JJAP.49.036502
18.
18. Y.-J. Yun, J.-H. Park, H. Choi, S. R. Park, K. Choi, J.-H. Kim, and J.-W. Han, Proc. SPIE 6923, 69233K (2008).
http://dx.doi.org/10.1117/12.772534
19.
19. E. Pargon, L. Azarnouche, M. Fouchier, K. Menguleti, and J. Jussot, J. Vac. Sci. Technol. B 31, 061203 (2013).
http://dx.doi.org/10.1116/1.4825238
20.
20. M. Fouchier, E. Pargon, L. Azarnouche, K. Menguelti, O. Joubert, T. Cardolaccia, and Y. C. Bae, Appl. Phys. A 105, 399 (2011).
http://dx.doi.org/10.1007/s00339-011-6553-3
21.
21. M. Fouchier, E. Pargon, L. Azarnouche, O. Luere, K. Menguelti, G. Cunges, N. Sadhegi, and O. Joubert, in Proceedings of the 32nd International Symposium on Dry Process, Tokyo, Japan, 11–12 November 2010, p.109.
22.
22. E. Kesters, M. Claes, Q. T. Le, M. Lux, A. Franquet, G. Vereecke, P. W. Mertens, M. M. Frank, R. Carleer, P. Adriaensens, J. J. Biebuyk, and S. Bebelman, Thin Solid Films 516, 3454 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.01.018
23.
23. D. Nest, D. B. Graves, S. Engelmann, R. L. Bruce, F. Weilnboeck, G. S. Oehrlein, C. Andes, and E. A. Hudson, Appl. Phys. Lett. 92, 153113 (2008).
http://dx.doi.org/10.1063/1.2912028
24.
24. D. Nest, T.-Y. Chung, D. B. Graves, S. Engelmann, R. L. Bruce, F. Weilnboeck, G. S. Oehrlein, D. Wang, C. Andes, and E. A. Hudson, Plasma Processes Polym. 6, 649 (2009).
http://dx.doi.org/10.1002/ppap.200900039
25.
25. M. J. Titus, D. G. Nest, and D. B. Graves, J. Phys. D: Appl. Phys. 42, 152001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/15/152001
26.
26. M. J. Titus, D. G. Nest, T.-Y. Chung, and D. B. Graves, J. Phys. D: Appl. Phys. 42, 245205 (2009).
http://dx.doi.org/10.1088/0022-3727/42/24/245205
27.
27. E. Kesters, Q. T. Le, M. Lux, L. Prager, and G. Vereecke, Microelectron. Eng. 87, 1674 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.051
28.
28. F. Weilnboeck, R. L. Bruce, S. Engelmann, G. S. Oehrlein, D. Nest, T.-Y. Chung, D. Graves, M. Li, D. Wang, C. Andes, and E. A. Hudson, J. Vac. Sci. Technol. B 28, 993 (2010).
http://dx.doi.org/10.1116/1.3484249
29.
29. G. Vereecke, M. Claes, Q. T. Le, E. Kesters, H. Struyf, R. Carleer, and P. Adriaensens, Electrochem. Solid-State Lett. 14, H408 (2011).
http://dx.doi.org/10.1149/1.3609838
30.
30. T.-Y. Chung, D. B. Graves, F. Weilnboeck, R. L. Bruce, G. S. Oehrlein, M. Li, and E. A. Hudson, Plasma Processes Polym. 8, 1068 (2011).
http://dx.doi.org/10.1002/ppap.201100071
31.
31. R. Tiron, E. Pargon, L. Azarnouche, H. Fontaine, S. Cetre, and C. Sourd, Proc. SPIE 7972, 797215 (2011).
http://dx.doi.org/10.1117/12.879390
32.
32. L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, M. Brihoum, R. Ramos, O. Joubert, P. Gouraud, and C. Verove, Proc. SPIE 8328, 83280H (2012).
http://dx.doi.org/10.1117/12.920314
33.
33. M. Brihoum, R. Ramos, K. Menguelti, G. Cunge, E. Pargon, and O. Joubert, J. Appl. Phys. 113, 013302 (2013).
http://dx.doi.org/10.1063/1.4773068
34.
34. R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G. S. Oehrlein, B. K. Long, C. G. Willson, J. J. Vegh, D. Nest, and D. B. Graves, J. Appl. Phys. 107, 084310 (2010).
http://dx.doi.org/10.1063/1.3373587
35.
35. T.-C. Lin, R. L. Bruce, G. S. Oehrlein, R. J. Phaneuf, and H.-C. Kan, Appl. Phys. Lett 100, 233113 (2012).
http://dx.doi.org/10.1063/1.4718940
36.
36. M. J. Titus, D. Nest, and D. B. Graves, Appl. Phys. Lett. 94, 171501 (2009).
http://dx.doi.org/10.1063/1.3125260
37.
37. L. Azarnouche, E. Pargon, K. Menguelti, M. Fouchier, D. Fuard, P. Gouraud, C. Verove, and O. Joubert, J. Appl. Phys. 111, 084318 (2012).
http://dx.doi.org/10.1063/1.4705509
38.
38. V. Constantoudis, G. P. Patsis, and E. Gogolides, J. Micro/Nanolith. MEMS MOEMS 3, 429 (2004).
http://dx.doi.org/10.1117/1.1759325
39.
39. V. Constantoudis and E. Gogolides, Proc. SPIE 5752, 1227 (2005).
http://dx.doi.org/10.1117/12.600563
40.
40. A. E. Zweber, M. Wagner, and R. G. Carbonell, J. Phys. Chem. B 113, 9687 (2009).
http://dx.doi.org/10.1021/jp900481j
41.
41. M. Martin and G. Cunge, J. Vac. Sci. Technol. B 26, 1281 (2008).
http://dx.doi.org/10.1116/1.2932091
42.
42. P. De Schepper, T. Hansen, E. Altamirano-Sanchez, A. Vaglio Pret, W. Boullart, and S. De Gendt, Proc. SPIE 8685, 868508 (2013).
http://dx.doi.org/10.1117/12.2011488
43.
43. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 2nd ed. (John Wiley and Sons Inc., New York, 1960).
44.
44. T. Ogata, K. Kasai, S. Matsumaru, M. Takahashi, H. Hada, and M. Shirai, J. Photopolym. Sci. Technol. 19, 705 (2006).
http://dx.doi.org/10.2494/photopolymer.19.705
45.
45. G. Wallraff, J. Hutchinson, W. Hinsberg, F. Houle, P. Seidel, R. Johnson, and W. Oldham, J. Vac. Sci. Technol. B 12, 3857 (1994).
http://dx.doi.org/10.1116/1.587454
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/7/10.1063/1.4865799
Loading
/content/aip/journal/jap/115/7/10.1063/1.4865799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/7/10.1063/1.4865799
2014-02-18
2015-04-25

Abstract

With the decrease of CMOS device dimensions, the linewidth roughness (LWR) of transistor gates is being recognized as a major concern. In integrated circuit manufacturing, an HBr plasma treatment has been used so far to reduce the LWR of photoresist (PR) lines printed by 193 nm lithography before transfer into the gate stack by plasma etching. In this article, a more efficient treatment based on HBr/O plasma exposure followed by a bake is developed, and the plasma conditions are optimized. We show that by controlling the dose of vacuum ultra violet (VUV) light emitted by the HBr/O plasma, the PR bulk can be either softened (photolysis) or strengthened (crosslinking). Moreover, the PR surface properties can be controlled by the O content of the plasma. The surface and bulk properties of the PR line after plasma treatment determine the LWR behavior during the subsequent thermal cure treatment. A soft resist bulk combined with a thin surface carbon layer is the ideal case to get the best LWR smoothing effect during the subsequent bake without reflowing. By optimizing both the plasma oxygen content and the VUV dose, we obtained a 59% LWR decrease (from 7.3 nm to 3.0 nm) using an HBr/O plasma treatment followed by a bake. The detailed study on the impact of the VUV dose during the plasma treatment permitted to determine the sidewall smoothing mechanisms involved. During both the plasma and the thermal treatments, the outgassing of the products of photolysis or deprotection reactions followed by the re-densification of the polymer material is shown to be the main sidewall smoothing enabler.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/7/1.4865799.html;jsessionid=1llxd3a2a16um.x-aip-live-02?itemId=/content/aip/journal/jap/115/7/10.1063/1.4865799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: HBr/O2 plasma treatment followed by a bake for photoresist linewidth roughness smoothing
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/7/10.1063/1.4865799
10.1063/1.4865799
SEARCH_EXPAND_ITEM