Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/9/10.1063/1.4867185
1.
1. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104748
2.
2. G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
3.
3. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, J. Appl. Phys. 97, 111101 (2005).
http://dx.doi.org/10.1063/1.1927699
4.
4. G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen, F.-J. M. z. Heringdorf, M. Yamaguchi, M. H.-v. Hoegen, R. Ernstorfer, and R. J. D. Miller, Nature 458, 56 (2009).
http://dx.doi.org/10.1038/nature07788
5.
5. P. Baum, D.-S. Yang, and A. H. Zewail, Science 318, 788 (2007).
http://dx.doi.org/10.1126/science.1147724
6.
6. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, New J. Phys. 15, 063021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/6/063021
7.
7. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, J. Appl. Phys. 92, 1643 (2002).
http://dx.doi.org/10.1063/1.1487437
8.
8. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, Science 302, 1382 (2003).
http://dx.doi.org/10.1126/science.1090052
9.
9. A. Gahlmann, S. Tae Park, and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2894 (2008).
http://dx.doi.org/10.1039/b802136h
10.
10. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, Phys. Rev. Lett. 105, 264801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.264801
11.
11. A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, New J. Phys. 14, 073055 (2012).
http://dx.doi.org/10.1088/1367-2630/14/7/073055
12.
12. G. H. Kassier, K. Haupt, N. Erasmus, E. G. Rohwer, and H. Schwoerer, J. Appl. Phys. 105, 113111 (2009).
http://dx.doi.org/10.1063/1.3132834
13.
13. P. Baum and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 104, 18409 (2007).
http://dx.doi.org/10.1073/pnas.0709019104
14.
14. Y. H. Wang and N. Gedik, IEEE J. Sel. Top. Quantum Electron. 18, 140 (2012).
http://dx.doi.org/10.1109/JSTQE.2011.2112339
15.
15. A. Lassise, P. H. A. Mutsaers, and O. J. Luiten, Rev. Sci. Instrum. 83, 043705 (2012).
http://dx.doi.org/10.1063/1.3703314
16.
16. G. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, Nucl. Instrum. Phys. Res. A 691, 113 (2012).
http://dx.doi.org/10.1016/j.nima.2012.06.057
17.
17. G. J. H. Brussaard, A. Lassise, P. L. E. M. Pasmans, P. H. A. Mutsaers, M. J. van der Wiel, and O. J. Luiten, Appl. Phys. Lett. 103, 141105 (2013).
http://dx.doi.org/10.1063/1.4823590
18.
18. M. Eichberger, N. Erasmus, K. Haupt, G. Kassier, A. von Flotow, J. Demsar, and H. Schwoerer, Appl. Phys. Lett. 102, 121106 (2013).
http://dx.doi.org/10.1063/1.4798518
19.
19. M. Gao, Y. Jiang, G. H. Kassier, and R. J. D. Miller, Appl. Phys. Lett. 103, 033503 (2013).
http://dx.doi.org/10.1063/1.4813313
20.
20. P. Baum and A. H. Zewail, Chem. Phys. Lett. 462, 14 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.07.072
21.
21. A. H. Zewail, Science 328, 187 (2010).
http://dx.doi.org/10.1126/science.1166135
22.
22. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, Proc. Natl. Acad. Sci. U.S.A. 107, 19714 (2010).
http://dx.doi.org/10.1073/pnas.1010165107
23.
23. A. Gahlmann, S. Tae Park, and A. H. Zewail, J. Am. Chem. Soc. 131, 2806 (2009).
http://dx.doi.org/10.1021/ja808720j
24.
24. H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.543
25.
25. A. Gahlmann, I.-R. Lee, and A. H. Zewail, Ang. Chem., Int. Ed. 49, 6524 (2010).
http://dx.doi.org/10.1002/anie.201003583
26.
26. I.-R. Lee, A. Gahlmann, and A. H. Zewail, Ang. Chem., Int. Ed. 51, 99 (2012).
http://dx.doi.org/10.1002/anie.201105803
27.
27. P. Baum and A. H. Zewail, Chem. Phys. 366, 2 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.07.013
28.
28. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.077401
29.
29. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247402
30.
30. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.043907
31.
31. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257603
32.
32. M. Schenk, M. Krüger, and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.257601
33.
33. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.147601
34.
34. M. Krüger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
http://dx.doi.org/10.1038/nature10196
35.
35. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Nature 483, 190 (2012).
http://dx.doi.org/10.1038/nature10878
36.
36. D.-S. Yang, O. F. Mohammed, and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 107, 14993 (2010).
http://dx.doi.org/10.1073/pnas.1009321107
37.
37. E. Peralta, K. Soong, E. R. England, R. J. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
38.
38. J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.134803
39.
39. B. W. J. McNeil and N. R. Thompson, Nat. Photon. 4, 814 (2010).
http://dx.doi.org/10.1038/nphoton.2010.239
40.
40. R. Ganter, R. Bakker, C. Gough, S. C. Leemann, M. Paraliev, M. Pedrozzi, F. Le Pimpec, V. Schlott, L. Rivkin, and A. Wrulich, Phys. Rev. Lett. 100, 064801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.064801
41.
41. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, J. Osterwalder, and M. Hengsberger, Phys. Rev. B 81, 115429 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115429
42.
42. P. W. Hawkes and E. Kasper, “ Principles of electron optics,” in Applied Geometrical Optics (Academic Press, London, 1989), Vol. 2.
43.
43. B. Cho, T. Ichimura, R. Shimizu, and C. Oshima, Phys. Rev. Lett. 92, 246103 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246103
44.
44. G. Pozzi, Optik 77, 69 (1987).
45.
45. P. W. Hawkes and E. Kasper, “ Principles of electron optics,” in Wave Optics (Academic Press, London, 1994), Vol. 3.
46.
46. J. C. H. Spence, High-Resolution Electron Microscopy (Oxford University Press, New York, 2003).
47.
47. B. Cho and C. Oshima, Bull. Korean Chem. Soc. 34, 892 (2013).
http://dx.doi.org/10.5012/bkcs.2013.34.3.892
48.
48. A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten, Nat. Commun. 4, 1692 (2013).
http://dx.doi.org/10.1038/ncomms2699
49.
49. W. J. Engelen, M. A. van der Heijden, D. J. Bakker, E. J. D. Vredenbregt, and O. J. Luiten, Nat. Commun. 4, 1693 (2013).
http://dx.doi.org/10.1038/ncomms2700
50.
50. A. Janzen, B. Krenzer, O. Heinz, P. Zhou, D. Thien, A. Hanisch, F.-J. M. zu Heringdorf, D. von der Linde, and M. H. von Hoegen, Rev. Sci. Instrum. 78, 013906 (2007).
http://dx.doi.org/10.1063/1.2431088
51.
51. P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y. R. Sortais, S. M. Foreman, and M. A. Kasevich, Ultramicroscopy 109, 423 (2009).
http://dx.doi.org/10.1016/j.ultramic.2008.10.021
52.
52. A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, and R. Ernstorfer, J. Appl. Phys. 112, 113109 (2012).
http://dx.doi.org/10.1063/1.4768204
53.
53. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, J. Phys. B 45, 074006 (2012).
http://dx.doi.org/10.1088/0953-4075/45/7/074006
54.
54. C. Weninger and P. Baum, Ultramicroscopy 113, 145 (2012).
http://dx.doi.org/10.1016/j.ultramic.2011.11.018
55.
55. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, Nat. Photon. 8, 52 (2014).
http://dx.doi.org/10.1038/NPHOTON.2013.315
56.
56. P. Baum, Chem. Phys. 423, 55 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.012
57.
57. J. Breuer and P. Hommelhoff, Phys. Rev. Spec. Top. Accel. Beams 17, 021301 (2014).
http://dx.doi.org/10.1103/PhysRevSTAB.17.021301
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/9/10.1063/1.4867185
Loading
/content/aip/journal/jap/115/9/10.1063/1.4867185
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/9/10.1063/1.4867185
2014-03-05
2016-12-05

Abstract

We present a nano-scale photoelectron source, optimized for ultrashort pulse durations and well-suited for time-resolved diffraction and advanced laser acceleration experiments. A tungsten tip of several-ten-nanometers diameter mounted in a suppressor-extractor electrode configuration allows the generation of 30 keV electron pulses with an estimated pulse duration of 9 fs (standard deviation; 21 fs full width at half maximum) at the gun exit. We infer the pulse duration from particle tracking simulations, which are in excellent agreement with experimental measurements of the electron-optical properties of the source in the spatial domain. We also demonstrate femtosecond-laser triggered operation of the apparatus. The temporal broadening of the pulse upon propagation to a diffraction sample can be greatly reduced by collimating the beam. Besides the short electron pulse duration, a tip-based source is expected to feature a large transverse coherence and a nanometric emittance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/9/1.4867185.html;jsessionid=GJomi6Rupj8CSiB2qX6vzpnx.x-aip-live-06?itemId=/content/aip/journal/jap/115/9/10.1063/1.4867185&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/9/10.1063/1.4867185&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/9/10.1063/1.4867185'
Right1,Right2,Right3,