Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/11/10.1063/1.4895992
1.
1. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwödiauer, Adv. Mater. 26, 149 (2014).
http://dx.doi.org/10.1002/adma.201303349
2.
2. Y. Guo, G. Yu, and Y. Liu, Adv. Mater. 22, 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
3.
3. H. E. Katz and J. Huang, Ann. Rev. Mater. Res. 39, 71 (2009).
http://dx.doi.org/10.1146/annurev-matsci-082908-145433
4.
4. A. Dodabalapur, Mater. Today 9, 24 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71444-4
6.
6. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).
http://dx.doi.org/10.1147/rd.451.0011
7.
7. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bredas, P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004).
http://dx.doi.org/10.1021/cm049391x
8.
8. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
http://dx.doi.org/10.1021/cr0501543
9.
9. D. Braga and G. Horowitz, Adv. Mater. 21, 1473 (2009).
http://dx.doi.org/10.1002/adma.200802733
10.
10. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
11.
11. D. Knipp and J. E. Northrup, Adv. Mater. 21, 2511 (2009).
http://dx.doi.org/10.1002/adma.200802173
12.
12. A. Vollmer, O. D. Jurchescu, I. Arfaoui, I. Salzmann, T. T. M. Palstra, P. Rudolf, J. Niemax, J. Pflaum, J. P. Rabe, and N. Koch, Eur. Phys. J. E 17, 339 (2005).
http://dx.doi.org/10.1140/epje/i2005-10012-0
13.
13. Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, Appl. Phys. Lett. 83, 1644 (2003).
http://dx.doi.org/10.1063/1.1604193
14.
14. S. Ogawa, T. Naijo, Y. Kimura, H. Ishii, and M. Niwano, Appl. Phys. Lett. 86, 252104 (2005).
http://dx.doi.org/10.1063/1.1949281
15.
15. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 92, 5259 (2002).
http://dx.doi.org/10.1063/1.1511826
16.
16. M. Kiguchi, M. Nakayama, T. Shimada, and K. Saiki, Phys. Rev. B 71, 035332 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035332
17.
17. S. W. Liu, C. C. Lee, H. L. Tai, J. M. Wen, J. H. Lee, and C. T. Chen, ACS Appl. Mater. Interfaces 2, 2282 (2010).
http://dx.doi.org/10.1021/am1003377
18.
18. S. W. Liu, J. M. Wen, C. C. Lee, W. C. Su, W. L. Wang, H. C. Chen, and C. F. Lin, Thin Solid Films 534, 640 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.069
19.
19. W. C. Su, C. C. Lee, S. W. Liu, W. L. Wang, J. M. Wen, Y. H. Ho, and C. F. Lin, Jpn. J. Appl. Phys., Part 1 53, 03CC03 (2014).
http://dx.doi.org/10.7567/JJAP.53.03CC03
20.
20. A. Shehu, S. D. Quiroga, P. D'Angelo, C. Albonetti, F. Borgatti, M. Murgia, A. Scorzoni, P. Stoliar, and F. Biscarini, Phys. Rev. Lett. 104, 246602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.246602
21.
21. S. D. Quiroga, A. Shehu, C. Albonetti, M. Murgia, P. Stoliar, F. Borgatti, and F. Biscarini, Rev. Sci. Instrum. 82, 025110 (2011).
http://dx.doi.org/10.1063/1.3534007
22.
22. M. Fiebig, D. Beckmeier, and B. Nickel, Appl. Phys. Lett. 96, 083304 (2010).
http://dx.doi.org/10.1063/1.3309685
23.
23.See www.siegertwafer.com for wafer fabrication.
24.
24. G. Sauerbrey, Z. Phys. 155, 206 (1959).
http://dx.doi.org/10.1007/BF01337937
25.
25. C. C. Mattheus, G. A. deWijs, R. A. de Groot, and T. T. M. Palstra, J. Am. Chem. Soc. 125, 6323 (2003).
http://dx.doi.org/10.1021/ja0211499
26.
26. A. Winkler, Springer Proc. Phys. 129, 29 (2009).
http://dx.doi.org/10.1007/978-3-540-95930-4_5
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4895992 for temperature correction of TD spectra.[Supplementary Material]
28.
28. D. Käfer, C. Wöll, and G. Witte, Appl. Phys. A 95, 273 (2009).
http://dx.doi.org/10.1007/s00339-008-5011-3
29.
29. N. Sato and Y. Shimogaki, ECS J. Solid State Sci. Technol. 1, N61 (2012).
http://dx.doi.org/10.1149/2.015204jss
30.
30. R. A. Street, Adv. Mater. 21, 2007 (2009).
http://dx.doi.org/10.1002/adma.200803211
31.
31. B. Nickel, M. Fiebig, S. Schiefer, M. Göllner, M. Huth, C. Erlen, and P. Lugli, Phys. Status Solidi A 205, 526 (2008).
http://dx.doi.org/10.1002/pssa.200723372
32.
32. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron. Devices 44, 1325 (1997).
http://dx.doi.org/10.1109/16.605476
33.
33. P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.509
34.
34. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
35.
35. A. Salleo, T. W. Chen, A. R. Völkl, Y. Wu, P. Liu, B. S. Ong, and R. A. Street, Phys. Rev. B 70, 115311 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115311
36.
36. E. J. Mejer, C. Tanase, P. W. M. Blom, E. van Veenendaal, B.-H. Huisman, D. M. de Leeuw, and T. M. Klapwijk, Appl. Phys. Lett. 80, 3838 (2002).
http://dx.doi.org/10.1063/1.1479210
37.
37. B. N. Park, S. Seo, and P. G. Evans, J. Phys. D: Appl. Phys. 40, 3506 (2007).
http://dx.doi.org/10.1088/0022-3727/40/11/037
38.
38. R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, Adv. Mater. 17, 1795 (2005).
http://dx.doi.org/10.1002/adma.200402077
39.
39. Y. W. Wang and H. L. Cheng, Solid State Electron. 53, 1107 (2009).
http://dx.doi.org/10.1016/j.sse.2009.05.003
40.
40. J. Quintanilla, S. Torquato, and R. M. Ziff, J. Phys. A: Math. Gen. 33, L399 (2000).
http://dx.doi.org/10.1088/0305-4470/33/42/104
41.
41. S. Sreenivasan, D. R. Baker, G. Paul, and H. E. Stanley, Physica A 320, 34 (2003).
http://dx.doi.org/10.1016/S0378-4371(02)01546-7
42.
42. E. T. Gawlinski and H. E. Stanley, J. Phys. A: Math. Gen. 14, L291 (1981).
http://dx.doi.org/10.1088/0305-4470/14/8/007
43.
43. E. Bauer, Z. Kristallogr. 110, 372 (1958).
http://dx.doi.org/10.1524/zkri.1958.110.1-6.372
44.
44. G. Ehrlich and F. G. Hudda, J. Chem. Phys. 44, 1039 (1966).
http://dx.doi.org/10.1063/1.1726787
45.
45. R. L. Schwöbel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).
http://dx.doi.org/10.1063/1.1707904
46.
46. A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, Appl. Phys. Lett. 86, 263501 (2005).
http://dx.doi.org/10.1063/1.1954901
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/11/10.1063/1.4895992
Loading
/content/aip/journal/jap/116/11/10.1063/1.4895992
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/11/10.1063/1.4895992
2014-09-18
2016-12-11

Abstract

The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/11/1.4895992.html;jsessionid=FJt2-0txg6qnbSCd1wdTzssH.x-aip-live-02?itemId=/content/aip/journal/jap/116/11/10.1063/1.4895992&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/11/10.1063/1.4895992&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/11/10.1063/1.4895992'
Right1,Right2,Right3,