Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. V. Varadan and A. R. Tellakula, J. Appl. Phys. 100(3), 034910 (2006).
2. R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 90(26), 263504 (2007).
3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000).
4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292(5514), 77 (2001).
5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314(5801), 977 (2006).
6. P. Gay-Balmaz and O. J. F. Martin, J. Appl. Phys. 92(5), 2929 (2002).
7. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444(7119), 597 (2006).
8. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Phys. Rev. B 75(4), 041102 (2007).
9. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, Appl. Phys. B 84(1–2), 219 (2006).
10. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438(7066), 335 (2005).
11. A. Ishikawa, T. Tanaka, and S. Kawata, Phys. Rev. Lett. 95(23), 237401 (2005).
12. H. Torun, S. Sadeghzadeh, and A. D. Yalcinkaya, Rev. Sci. Instrum. 84(10), 106107 (2013).
13. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, Appl. Phys. Lett. 95(1), 011106 (2009).
14. A. K. Horestani, C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, IEEE Sens. J. 13(4), 1153 (2013).
15. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, Sens. Actuators, A 189(0), 233 (2013).
16. M. S. Boybay, A. Jiao, T. Glawdel, and C. L. Ren, Lab Chip 13(19), 3840 (2013).
17. H.-J. Lee, J.-H. Lee, H.-S. Moon, I.-S. Jang, J.-S. Choi, J.-G. Yook, and H.-I. Jung, Sens. Actuators B 169(0), 26 (2012).
18. H.-J. Lee and J.-G. Yook, Appl. Phys. Lett. 92(25), 254103 (2008).
19. H.-J. Lee, H.-S. Lee, K.-H. Yoo, and J.-G. Yook, J. Appl. Phys. 108(1), 014908 (2010).
20. H. Torun, K. K. Sarangapani, and F. L. Degertekin, J. Microelectromech. Syst. 19(5), 1021 (2010).
21. O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, J. Appl. Phys. 105(1), 014903 (2009).
22. D. B. Leeson, Proc. IEEE 54(2), 329 (1966).
23. M. Kan, F. Wang, J. Xu, J. W. Crabb, J. Hou, and W. L. McKeehan, Science 259(5103), 1918 (1993).
24. H. Rahmoune, H.-L. Chen, J. T. Gallagher, P. S. Rudland, and D. G. Fernig, J. Biol. Chem. 273(13), 7303 (1998).

Data & Media loading...


Article metrics loading...



An antenna-coupled split-ring resonator-based microwave sensor is introduced for biosensing applications. The sensor comprises a metallic ring with a slit and integrated monopole antennas on top of a dielectric substrate. The backside of the substrate is attached to a metallic plate. Integrated antennas are used to excite the device and measure its electromagnetic characteristics. The resonant frequency of the device is measured as 2.12 GHz. The characteristics of the device with dielectric loading at different locations across its surface are obtained experimentally. The results indicate that dielectric loading reduces the resonant frequency of the device, which is in good agreement with simulations. The shift in resonant frequency is employed as the sensor output for biomolecular experiments. The device is demonstrated as a resonant biomolecular sensor where the interactions between heparin and fibroblast growth factor 2 are probed. The sensitivity of the device is obtained as 3.7 MHz/(g/ml) with respect to changes in concentration of heparin.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd