Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/12/10.1063/1.4896261
1.
1. V. V. Varadan and A. R. Tellakula, J. Appl. Phys. 100(3), 034910 (2006).
http://dx.doi.org/10.1063/1.2218669
2.
2. R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 90(26), 263504 (2007).
http://dx.doi.org/10.1063/1.2752120
3.
3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
4.
4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292(5514), 77 (2001).
http://dx.doi.org/10.1126/science.1058847
5.
5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314(5801), 977 (2006).
http://dx.doi.org/10.1126/science.1133628
6.
6. P. Gay-Balmaz and O. J. F. Martin, J. Appl. Phys. 92(5), 2929 (2002).
http://dx.doi.org/10.1063/1.1497452
7.
7. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444(7119), 597 (2006).
http://dx.doi.org/10.1038/nature05343
8.
8. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Phys. Rev. B 75(4), 041102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.041102
9.
9. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, Appl. Phys. B 84(1–2), 219 (2006).
http://dx.doi.org/10.1007/s00340-006-2205-2
10.
10. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438(7066), 335 (2005).
http://dx.doi.org/10.1038/nature04242
11.
11. A. Ishikawa, T. Tanaka, and S. Kawata, Phys. Rev. Lett. 95(23), 237401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.237401
12.
12. H. Torun, S. Sadeghzadeh, and A. D. Yalcinkaya, Rev. Sci. Instrum. 84(10), 106107 (2013).
http://dx.doi.org/10.1063/1.4825347
13.
13. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, Appl. Phys. Lett. 95(1), 011106 (2009).
http://dx.doi.org/10.1063/1.3162336
14.
14. A. K. Horestani, C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, IEEE Sens. J. 13(4), 1153 (2013).
http://dx.doi.org/10.1109/JSEN.2012.2231065
15.
15. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, Sens. Actuators, A 189(0), 233 (2013).
http://dx.doi.org/10.1016/j.sna.2012.10.027
16.
16. M. S. Boybay, A. Jiao, T. Glawdel, and C. L. Ren, Lab Chip 13(19), 3840 (2013).
http://dx.doi.org/10.1039/c3lc50418b
17.
17. H.-J. Lee, J.-H. Lee, H.-S. Moon, I.-S. Jang, J.-S. Choi, J.-G. Yook, and H.-I. Jung, Sens. Actuators B 169(0), 26 (2012).
http://dx.doi.org/10.1016/j.snb.2012.01.044
18.
18. H.-J. Lee and J.-G. Yook, Appl. Phys. Lett. 92(25), 254103 (2008).
http://dx.doi.org/10.1063/1.2946656
19.
19. H.-J. Lee, H.-S. Lee, K.-H. Yoo, and J.-G. Yook, J. Appl. Phys. 108(1), 014908 (2010).
http://dx.doi.org/10.1063/1.3459877
20.
20. H. Torun, K. K. Sarangapani, and F. L. Degertekin, J. Microelectromech. Syst. 19(5), 1021 (2010).
http://dx.doi.org/10.1109/JMEMS.2010.2067439
21.
21. O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, J. Appl. Phys. 105(1), 014903 (2009).
http://dx.doi.org/10.1063/1.3056052
22.
22. D. B. Leeson, Proc. IEEE 54(2), 329 (1966).
http://dx.doi.org/10.1109/PROC.1966.4682
23.
23. M. Kan, F. Wang, J. Xu, J. W. Crabb, J. Hou, and W. L. McKeehan, Science 259(5103), 1918 (1993).
http://dx.doi.org/10.1126/science.8456318
24.
24. H. Rahmoune, H.-L. Chen, J. T. Gallagher, P. S. Rudland, and D. G. Fernig, J. Biol. Chem. 273(13), 7303 (1998).
http://dx.doi.org/10.1074/jbc.273.13.7303
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/12/10.1063/1.4896261
Loading
/content/aip/journal/jap/116/12/10.1063/1.4896261
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/12/10.1063/1.4896261
2014-09-26
2016-09-30

Abstract

An antenna-coupled split-ring resonator-based microwave sensor is introduced for biosensing applications. The sensor comprises a metallic ring with a slit and integrated monopole antennas on top of a dielectric substrate. The backside of the substrate is attached to a metallic plate. Integrated antennas are used to excite the device and measure its electromagnetic characteristics. The resonant frequency of the device is measured as 2.12 GHz. The characteristics of the device with dielectric loading at different locations across its surface are obtained experimentally. The results indicate that dielectric loading reduces the resonant frequency of the device, which is in good agreement with simulations. The shift in resonant frequency is employed as the sensor output for biomolecular experiments. The device is demonstrated as a resonant biomolecular sensor where the interactions between heparin and fibroblast growth factor 2 are probed. The sensitivity of the device is obtained as 3.7 MHz/(g/ml) with respect to changes in concentration of heparin.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/12/1.4896261.html;jsessionid=iG6P1PvU_Y3VjR02fLBiZ_yp.x-aip-live-03?itemId=/content/aip/journal/jap/116/12/10.1063/1.4896261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/12/10.1063/1.4896261&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/12/10.1063/1.4896261'
Right1,Right2,Right3,