Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/13/10.1063/1.4897218
1.
1. S. Szunerits and R. Boukherroub, J. Solid State Electrochem. 12, 1205 (2008).
http://dx.doi.org/10.1007/s10008-007-0473-3
2.
2. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Ya. Vul, and E. Ōsawa, Carbon 43, 1722 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.02.020
3.
3. A. Chaudhary, J. O. Welch, and R. B. Jackman, Appl. Phys. Lett. 96, 242903 (2010).
http://dx.doi.org/10.1063/1.3446966
4.
4. O. A. Williams and R. B. Jackman, Semicond. Sci. Technol. 18, S34 (2003).
http://dx.doi.org/10.1088/0268-1242/18/3/305
5.
5. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Phys. Rev. Lett. 85, 3472 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3472
6.
6. D. P. Malta, J. B. Posthill, T. P. Humphreys, R. E. Thomas, G. G. Fountain, R. A. Rudder, G. C. Hudson, M. J. Mantini, and R. J. Markunas, Appl. Phys. Lett. 64, 1929 (1994).
http://dx.doi.org/10.1063/1.111745
7.
7. T. Kondo, I. Neitzel, V. N. Mochalin, J. Urai, M. Yuasa, and Y. Gogotsi, J. Appl. Phys. 113, 214307 (2013).
http://dx.doi.org/10.1063/1.4809549
8.
8. J. B. Cui, J. Ristein, and L. Ley, Phys. Rev. Lett. 81, 429 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.429
9.
9. M. Karlsson, P. Forsberg, and F. Nikolajeff, Langmuir 26, 889 (2010).
http://dx.doi.org/10.1021/la902361c
10.
10. S. Zeppillia, J. C. Arnault, C. Gesset, P. Bergonzo, and R. Polini. Diamond Relat. Mater. 19, 846 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.02.005
11.
11. S. Su, J. Li, V. Kundrát, A. M. Abbot, and H. Ye, J. Appl. Phys. 113, 023707 (2013).
http://dx.doi.org/10.1063/1.4773830
12.
12. S. Nath and J. Wilson, “ Impedance measurements on CVD diamond,” Diamond Relat. Mater. 5, 65 (1996).
http://dx.doi.org/10.1016/0925-9635(96)80007-0
13.
13. S. Curat, H. Ye, O. Gaudin, R. B. Jackman, and S. Koizumi, J. Appl. Phys. 98, 073701 (2005).
http://dx.doi.org/10.1063/1.2058183
14.
14. N. Tumilty, J. Welch, H. Ye, R. S. Balmer, C. Wort, R. Lang, and R. B. Jackman, Appl. Phys. Lett. 94, 052107 (2009).
http://dx.doi.org/10.1063/1.3075860
15.
15. H. El-Hajj, A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, Diamond Relat. Mater. 17, 409 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.12.030
16.
16. E. Osawa, Pure Appl. Chem. 80, 1365 (2008).
http://dx.doi.org/10.1351/pac200880071365
17.
18.
18. T. Jiang and K. Xu, Carbon 33, 1663 (1995).
http://dx.doi.org/10.1016/0008-6223(95)00115-1
19.
19. P. H. Chung, E. Perevedentseva, J. S. Tu, C. C. Chang, and C. L. Cheng, Diamond Relat. Mater. 15, 622(2006).
http://dx.doi.org/10.1016/j.diamond.2005.11.019
20.
20. C. D. Chu, E. Perevedentseva, V. Yeh, S. J. Cai, J. S. Tu, and C. L. Cheng, Diamond Relat. Mater. 18, 76 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.10.015
21.
21. C. L. Cheng, C. F. Chen, W. C. Shaio, D. S. Tsai, and K. H. Chen, Diamond Relat. Mater. 14, 1455 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.03.003
22.
22. L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond Relat. Mater. 11, 845 (2002).
http://dx.doi.org/10.1016/S0925-9635(01)00636-7
23.
23. H. Kawarada, Surf. Sci. Rep. 26, 205 (1996).
http://dx.doi.org/10.1016/S0167-5729(97)80002-7
24.
24. J. K. Lee, M. W. Anderson, F. A. Gray, P. John, J. Y. Lee, Y. J. Baik, and K. Y. Eun, Diamond Relat. Mater. 13, 1070 (2004).
http://dx.doi.org/10.1016/j.diamond.2004.01.026
25.
25. P. Vanýsek, DTIC Report No. AD-A277081, 78 (1994).
26.
26. L. Hench and J. West, Principles of Electronic Ceramics ( Wiley, 1990), Chap. 5.
27.
27. V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, and D. Spitzera, Diamond Relat. Mater. 17, 13 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.09.011
28.
28. I. I. Kulakova, Phys. Solid State 46, 636 (2004).
http://dx.doi.org/10.1134/1.1711440
29.
29. V. Mortet, J. D'Haen, J. Potmesil, R. Kravets, I. Drbohlav, V. Vorlicek, J. Rosa, and M. Vanecek, Diamond Relat. Mater. 14, 393(2005).
http://dx.doi.org/10.1016/j.diamond.2004.12.057
30.
30. C. Su and J. Lin, Surf. Sci. 406, 149 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00107-1
31.
31. V. Kuznetsov and Y. Butenko, Synthesis and Applications of Ultrananocrystalline ( Diamond, Springer, Dordrecht, 2005), Vol. 15, p. 199.
32.
32. D. S. Zhao, M. Zhao, and Q. Jiang, Diamond Relat. Mater. 11, 234 (2002).
http://dx.doi.org/10.1016/S0925-9635(01)00694-X
33.
33. M. Bevilacqua, S. Patel, A. Chaudhary, H. Ye, and R. B. Jackman, Appl. Phys. Lett. 93, 132115 (2008).
http://dx.doi.org/10.1063/1.2996026
34.
34. C. Pantea, J. Gubicza, T. Ungar, G. A. Voronin, and T. W. Zerda, Phys. Rev. B 66, 094106 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094106
35.
35. V. V. Danilenko, J. Superhard Mater. 31, 218 (2009).
http://dx.doi.org/10.3103/S1063457609040029
36.
36. L. Li and X. Zhao, J. Chem. Phys. 134, 044711 (2011).
http://dx.doi.org/10.1063/1.3528726
37.
37. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol. 7, 11(2011).
http://dx.doi.org/10.1038/nnano.2011.209
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/13/10.1063/1.4897218
Loading
/content/aip/journal/jap/116/13/10.1063/1.4897218
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/13/10.1063/1.4897218
2014-10-06
2016-12-09

Abstract

Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/13/1.4897218.html;jsessionid=QSXpNb8Thz4cW0YKV6_y4hHH.x-aip-live-06?itemId=/content/aip/journal/jap/116/13/10.1063/1.4897218&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/13/10.1063/1.4897218&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/13/10.1063/1.4897218'
Right1,Right2,Right3,