Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, Science 321, 226 (2008).
2. M. G. Debije and P. P. C. Verbunt, Adv. Energy Mater. 2, 12 (2012).
3. W. H. Weber and J. Lambe, Appl. Opt. 15, 2299 (1976).
4. A. Goetzberger and W. Greube, Appl. Phys. 14, 123 (1977).
5. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, Opt. Express 16, 21773 (2008).
6. T. Markvart, J. Appl. Phys. 99, 026101 (2006).
7. U. Rau, F. Einsele, and G. C. Glaeser, Appl. Phys. Lett. 87, 171101 (2005).
8. M. G. Debije, M. P. Van, P. P. Verbunt, M. J. Kastelijn, R. H. van der Blom, D. J. Broer, and C. W. Bastiaansen, Appl. Opt. 49, 745 (2010).
9. R. Reisfeld, Opt. Mater. 32, 850 (2010).
10. S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, Sol. Energy Mater. Sol. Cells 98, 385 (2012).
11. H. R. Wilson, Sol. Energy Mater. 16, 223 (1987).
12. C. Tummeltshammer, M. S. Brown, A. Taylor, A. J. Kenyon, and I. Papakonstantinou, Opt. Express 21, A735 (2013).
13. K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, Appl. Phys. Lett. 76, 1197 (2000).
14. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, Adv. Funct. Mater. 19, 2714 (2009).
15. R. W. MacQueen, Y. Y. Cheng, R. G. C. R. Clady, and T. W. Schmidt, Opt. Express 18, A161 (2010).
16. M. G. Debije, Adv. Funct. Mater. 20, 1498 (2010).
17. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, Opt. Express 18, A79 (2010).
18. C. L. Mulder, P. D. Reusswig, A. P. Beyler, H. Kim, C. Rotschild, and M. A. Baldo, Opt. Express 18, A91 (2010).
19. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, Appl. Opt. 47, 6763 (2008).
20. R. W. MacQueen and T. W. Schmidt, J. Phys. Chem. Lett. 4, 2874 (2013).
21. W. E. Benjamin, D. R. Veit, M. J. Perkins, E. Bain, K. Scharnhorst, S. McDowall, D. L. Patrick, and J. D. Gilbertson, Chem. Mater. 26, 1291 (2014).
22. J. ter Schiphorst, A. M. Kendhale, M. G. Debije, C. Menelaou, L. M. Herz, and A. P. H. J. Schenning, Chem. Mater. 26, 3876 (2014).
23. D. Sahin, B. Ilan, and D. F. Kelley, J. Appl. Phys. 110, 033108 (2011).
24. A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, in Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, June, 2005.
25. J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, Appl. Opt. 22, 573 (1983).
26. L. Novotny and B. Hecht, Principles of Nano-Optics ( Cambridge University Press, Cambridge, 2006).
27. J. D. Jackson, Classical Electrodynamics ( Wiley, New York, 1999).
28. J. A. Rice, Mathematical Statistics and Data Analysis ( Duxbury, Belmont, 1995).
29. A. M. Kendhale, A. P. H. J. Schenning, and M. G. Debije, J. Mater. Chem. A 1, 229 (2013).
30. H. Langhals, A. J. Esterbauer, A. Walter, E. Riedle, and I. Pugliesi, J. Am. Chem. Soc. 132, 16777 (2010).
31. B. W. van der Meer, Rev. Mol. Biotechnol. 82, 181 (2002).
32.Oregon Medical Laser Center, “Coumarin 6,” see (2014).
33. G. A. Reynolds and K. H. Drexhage, Opt. Commun. 13, 222 (1975).
34.National Renewable Energy Laboratory, “Reference Solar Spectral Irradiance: Air Mass 1.5,” see (2013).
35. S. Forrest and M. Mitchell, in Foundations of Genetic Algorithms, edited by D. Whitley ( Morgan Kaufmann, San Mateo, CA, 1993), Vol. 2, pp. 109126.
36. V. Sholin, J. D. Olson, and S. A. Carter, J. Appl. Phys. 101, 123114 (2007).
37. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, Appl. Phys. Lett. 96, 191901 (2010).
38. M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, Sol. Energy 83, 978 (2009).
39. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, ACS Nano 3, 3023 (2009).
40. S. R. Wilton, M. R. Fetterman, J. J. Low, G. You, Z. Jiang, and J. Xu, Opt. Express 22, A35 (2014).
41. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, Appl. Opt. 49, 1651 (2010).

Data & Media loading...


Article metrics loading...



We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd