Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “ Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Exp. 17(5), 30633077 (2009).
2. C.-H. Sun, P. Jiang, and B. Jiang, “ Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
3. R. L. Smith and S. D. Collins, “ Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
4. M. Ge, X. Fang, J. Rong, and C. Zhou, “ Review of porous silicon preparation and its application for lithium-ion battery anodes,” Nanotechnology 24(42), 422001 (2013).
5. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “ Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770 (2007).
6. S. A. Boden and D. M. Bagnall, “ Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
7. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, “ Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554 (1997).
8. H. Wang, L. A. Zepeda-Ruiz, G. H. Gilmer, and M. Upmanyu, “ Atomistics of vapour-liquid-solid nanowire growth,” Nat. Commun. 4, 1956 (2012).
9. K. Peng, Y. Yan, S. Gao, and J. Zhu, “ Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Adv. Mater. 14, 11641167 (2002).<1164::AID-ADMA1164>3.0.CO;2-E
10. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “ Metal-assisted chemical etching of silicon: A review,” Adv. Mater. 23, 285 (2011).
11. G. Jia, M. Steglich, I. Sill, and F. Falk, “ Core–shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 96, 226230 (2012).
12. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “ Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383 (2000).
13. H. M. Vandriel, J. E. Sipe, and J. F. Young, “ Laser-induced coherent modulation of solid and liquid surfaces,” J. Luminescence 30, 446471 (1985).
14. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “ The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
15. R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “ Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 33953402 (2005).
16. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “ Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 30853093 (2006).
17. M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “ Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett. 11, S10502 (2013).
18. J. I. Gittleman, E. K. Sichel, H. W. Lehmann, and R. Widmer, “ Textured silicon: A selective absorber for solar thermal conversion,” Appl. Phys. Lett. 35(10), 742744 (1979).
19. S. H. Zaidi, D. S. Ruby, and J. M. Gee, “ Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Devices 48(6), 12001206 (2001).
20. J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “ Black luminescent silicon,” Phys. Status Solidi C 8(3), 10211026 (2011).
21. H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “ Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng. 19, 033001 (2009).
22. H. V. Jansen, M. J. de Boer, K. Ma, M. Girones, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “ Black silicon method XI: Oxygen pulses in SF6 plasma,” J. Micromech. Microeng. 20, 075027 (2010).
23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “ Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
24. X. Mellhaoui, R. Dussart, T. Tillocher, P. Lefaucheux, P. Ranson, M. Boufnichel, and L. J. Overzet, “ SiOxFy passivation layer in silicon cryoetching,” J. Appl. Phys. 98, 104901 (2005).
25. T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “ Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol., A 24, 1073 (2006).
26. R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “ Plasma cryogenic etching of silicon: From the early days to today's advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
27. H. Jansen, M. de Boer, H. Wensink, B. Kloeck, and M. Elwenspoek, “ The black silicon method. VIII. A study of the performance of etching silicon using SF6/O2-based chemistry with cryogenical wafer cooling and a high density ICP source,” Microelectron. J. 32, 769 (2001).
28. M. Köhler, Etching in Microsystems Technology ( Wiley-VCH, Weinheim, 1999) pp. 162163.
29. E. A. Eklund, R. Bruinsma, J. Rudnick, and R. S. Williams, “ Submicron-scale surface roughening induced by ion bombardment,” Phys. Rev. Lett. 67(13), 17591762 (1991).
30. I. Koponen and M. Hautala, “ Modeling ion bombardment induced submicron-scale surface roughening,” Nucl. Instrum. Methods Phys. Res., Sect. B 103(2), 156160 (1995).
31. M. Boufnichel, P. Lefaucheux, S. Aachboun, R. Dussart, and P. Ranson, “ Origin, control and elimination of undercut in silicon deep plasma etching in the cryogenic process,” Microelectron. Eng. 77, 327336 (2005).
32. W. H. Southwell, “ Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8(3), 549553 (1991).
33. J. Haynos, J. Allison, R. Arndt, and A. Meulenberg, “ The Comsat non-reflective silicon solar cell: a second generation improved cell,” in International Conference on Photovoltaic Power Generation, Hamburg, September, 1974, p. 487.
34. T. Yagi, Y. Uraoka, and T. Fuyuki, “ Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 26472656 (2006).
35. D. A. G. Brüggeman, “ Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(1–7), 636 (1935).
36. E. Yablonovitch, “ Statistical ray optics,” J. Opt. Soc. Am. 72, 899 (1982).
37. M. G. Moharam and T. K. Gaylord, “ Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385 (1982).
38. W. H. Southwell, “ Gradient-index antireflection coatings,” Opt. Lett. 8, 584 (1983).
39. S. J. Wilson and M. C. Hutley, “ The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (London) 29, 993 (1982).
40. K. Yamamoto, A. Sakamoto, T. Nagano, and K. Fukumitsu, “ NIR sensitivity enhancement by laser treatment for Si detectors,” Nucl. Instrum. Methods Phys. Res. A 624, 520523 (2010).
41. Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “ Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt. 50(17), 25082511 (2011).
42. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “ Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
43. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “ Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
44. J. Oh, H.-C. Yuan, and H. M. Branz, “ An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7, 743748 (2012).
45. Y. Inomata, K. Fukui, and K. Shirasawa, “ Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48, 237 (1997).
46. Z. Shen, B. Liu, Y. Xia, J. Liu, J. Liu, S. Zhong, and C. Li, “ Black silicon on emitter diminishes the lateral electric field and enhances the blue response of a solar cell by optimizing depletion region uniformity,” Scr. Mater. 68, 199 (2013).
47. M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “ An ultra-black silicon absorber,” Laser Photonics Rev. 8(2), L13L17 (2014).
48. S. Kalem, P. Werner, Ö. Arthursson, V. Talalaev, B. Nilsson, M. Hagberg, H. Frederiksen, and U. Södervall, “ Black silicon with high density and high aspect ratio nanowhiskers,” Nanotechnology 22, 235307 (2011).
49. H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, and J. Fluitman, “ A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6, 1428 (1996).
50. K. N. Nguyen, P. Basset, F. Marty, Y. Leprince-Wang, and T. Bourouina, “ On the optical and morphological properties of microstructured Black Silicon by cryogenic-enhanced plasma reactive ion etching,” J. Appl. Phys. 113, 194903 (2013).
51. D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. Roca i Cabarrocas, “ Black Silicon formation using dry etching for solar cell applications,” Mater. Sci. Eng. B 177, 15091513 (2012).
52. M. Ernst, R. Brendel, R. Ferré, and N.-P. Harder, “ Thin macroporous silicon heterojunction solar cells,” Phys. Status Solidi 6, 187 (2012).
53. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, “ Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062 (2005).
54. E. C. Garnett and P. Yang, “ Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130, 9224 (2008).
55. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “ Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).

Data & Media loading...


Article metrics loading...



Black Silicon nanostructures are fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) in a gas mixture of SF and O at non-cryogenic temperatures. The structure evolution and the dependency of final structure geometry on the main processing parameters gas composition and working pressure are investigated and explained comprehensively. The optical properties of the produced Black Silicon structures, a distinct antireflection and light trapping effect, are resolved by optical spectroscopy and conclusively illustrated by optical simulations of accurate models of the real nanostructures. By that the structure sidewall roughness is found to be critical for an elevated reflectance of Black Silicon resulting from non-optimized etching processes. By analysis of a multitude of structures fabricated under different conditions, approximate limits for the range of feasible nanostructure geometries are derived. Finally, the technological applicability of Black Silicon fabrication by ICP-RIE is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd