Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/19/10.1063/1.4902009
1.
1. M. J. Rodwell, M. Le, and B. Brar, Proc. IEEE 96, 271 (2008).
http://dx.doi.org/10.1109/JPROC.2007.911058
2.
2. T. V. Blank and Y. A. Gol'dberg, Semiconductors 41, 1263 (2007).
http://dx.doi.org/10.1134/S1063782607110012
3.
3. U. Singisetti, M. A. Wistey, J. D. Zimmerman, B. J. Thibeault, M. J. W. Rodwell, A. C. Gossard, and S. R. Bank, Appl. Phys. Lett. 93, 183502 (2008).
http://dx.doi.org/10.1063/1.3013572
4.
4. A. G. Baca, F. Ren, J. C. Zolpera, R. D. Briggs, and S. J. Pearton, Thin Solid Films 308–309, 599 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00439-2
5.
5. J. A. del Alamo, Nature 479, 317 (2011).
http://dx.doi.org/10.1038/nature10677
6.
6. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S.-Y. Chen, M. Madsen, A. C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, Nature 468, 286 (2010).
http://dx.doi.org/10.1038/nature09541
7.
7. R. Dormaier and S. E. Mohney, J. Vac. Sci. Technol., B 30, 031209 (2012).
http://dx.doi.org/10.1116/1.4705730
8.
8. R. T. Tung, Appl. Phys. Rev. 1, 011304 (2014).
http://dx.doi.org/10.1063/1.4858400
9.
9. K. Suh, H. K. Park, and K. L. Moazed, J. Vac. Sci. Technol., B 1, 365 (1983).
http://dx.doi.org/10.1116/1.582558
10.
10. J. Bloch, M. Heiblum, and Y. Komem, Appl. Phys. Lett. 46, 1092 (1985).
http://dx.doi.org/10.1063/1.95772
11.
11. F. Meyer, E. Velu, C. Pellet, C. Schwebel, and C. Dupas, Rev. Phys. Appl. 23, 933 (1988).
http://dx.doi.org/10.1051/rphysap:01988002305093300
12.
12. P. M. Batev, M. D. Ivanovitch, E. I. Kafedjiiska, and S. S. Simeonov, Int. J. Electron. 48, 511 (1980).
http://dx.doi.org/10.1080/00207218008901133
13.
13. C. Cockun, S. Aydogan, and H. Efeoglu, Semicond. Sci. Technol. 19, 242 (2004).
http://dx.doi.org/10.1088/0268-1242/19/2/020
14.
14. T.-W. Kim, D.-H. Kim, and J. del Alamo, IEEE International Electron Devices Meeting (IEDM) 30.7.1 (2010).
15.
15. S. A. Chambers, M. H. Engelhard, V. Shutthanandan, Z. Zhu, T. C. Droubay, L. Qiao, P. V. Sushko, T. Feng, H. D. Lee, T. Gustafsson, E. Garfunkel, A. B. Shah, J.-M. Zuo, and Q. M. Ramasse, Surf. Sci. Rep. 65, 317 (2010).
http://dx.doi.org/10.1016/j.surfrep.2010.09.001
16.
16. Y.-i. Matsushita and A. Oshiyama, Phys. Rev. Lett. 112, 136403 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.136403
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
19.
19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
20.
20. K. T. Delaney, N. A. Spaldin, and C. G. V. de Walle, Phys. Rev. B. 81, 165312 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165312
21.
21. K. T. Butler and J. H. Harding, J. Phys.: Condens. Matter 25, 395003 (2013).
22.
22. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
23.
23. M. J. Zhu, D. M. Bylander, and L. Kleinman, Phys. Rev. B 36, 3182 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.3182
24.
24. M. Causá, R. Dovesi, and C. Roetti, Phys. Rev. B 43, 11937 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.11937
25.
25. M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 54, 4519 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4519
26.
26. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
27.
27. W. Mönch, Rep. Prog. Phys. 53, 221 (1990).
http://dx.doi.org/10.1088/0034-4885/53/3/001
28.
28. W. Orellana and A. C. Ferraz, Phys. Rev. B 61, 5326 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5326
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/19/10.1063/1.4902009
Loading
/content/aip/journal/jap/116/19/10.1063/1.4902009
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/19/10.1063/1.4902009
2014-11-18
2016-12-06

Abstract

The electronic and structural properties of Mo(100)/GaAs(100) interfaces and Mo diffusion into GaAs are explored using first principle calculations. Our results show that the interface undergoes substantial atomic rearrangement with respect to the bulk structures and the bilayer of the GaAs adjacent to the interface becomes conducting. We study the -type Schottky barrier height's dependence on Mo interdiffusion in the GaAs, with values ranging from ∼0.9 eV to ∼1.39 eV. This range is caused by the diffusants acting as additional n–type doping at the surface and their interaction with the metal-induced gap states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/19/1.4902009.html;jsessionid=tExc5n10PUz_637JzYirugus.x-aip-live-02?itemId=/content/aip/journal/jap/116/19/10.1063/1.4902009&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/19/10.1063/1.4902009&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/19/10.1063/1.4902009'
Right1,Right2,Right3,