Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/3/10.1063/1.4887796
1.
1. E. Xenogiannopoulou, S. Couris, E. Koudoumas, N. Tagmatarchis, T. Inoue, and H. Shinohara, Chem. Phys. Lett. 394, 14 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.093
2.
2. D. W. Cagle, T. P. Thrash, M. Alford, L. P. F. Chibante, G. J. Ehrhardt, and L. J. Wilson, J. Am. Chem. Soc. 118, 8043 (1996).
http://dx.doi.org/10.1021/ja960841z
3.
3. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Nature 417, 722 (2002).
http://dx.doi.org/10.1038/nature00791
4.
4. T. I. Smirnova, A. I. Smirnov, T. G. Chadwick, and K. L. Walker, Chem. Phys. Lett. 453, 233 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.01.036
5.
5. W. Harneit, Phys. Rev. A 65, 032322 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.032322
6.
6. A. Ardavan, M. Austwick, S. C. Benjamin, G. A. D. Briggs, T. J. S. Dennis, A. Ferguson, D. G. Hasko, M. Kanai, A. N. Khlobystov, B. W. Lovett, G. W. Morley, R. A. Oliver, D. G. Pettifor, K. Porfyrakis, J. H. Reina, J. H. Rice, J. D. Smith, R. A. Taylor, D. A. Williams, C. Adelmann, H. Mariette, and R. J. Hamers, Philos. Trans. R. Soc. London, Ser. A 361, 1473 (2003).
http://dx.doi.org/10.1098/rsta.2003.1214
7.
7. S. C. Benjamin, A. Ardavan, G. A. D. Briggs, D. A. Britz, D. Gunlycke, J. Jefferson, M. A. G. Jones, D. F. Leigh, B. W. Lovett, A. N. Khlobystov, S. A. Lyon, J. J. L. Morton, K. Porfyrakis, M. R. Sambrook, and A. M. Tyryshkin, J. Phys. Condens. Matter 18, S867 (2006).
http://dx.doi.org/10.1088/0953-8984/18/21/S12
8.
8. T. A. Murphy, T. Pawlik, A. Weidinger, M. Hohne, R. Alcala, and J. M. Spaeth, Phys. Rev. Lett. 77, 1075 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1075
9.
9. S. Sato, S. Seki, G. Luo, M. Suzuki, J. Lu, S. Nagase, and T. Akasaka, J. Am. Chem. Soc. 134, 11681 (2012).
http://dx.doi.org/10.1021/ja303660g
10.
10. O. Tishchenko and D. G. Truhlar, J. Phys. Chem. Lett. 4, 422 (2013).
http://dx.doi.org/10.1021/jz3020259
11.
11. S. Y. Yang, M. Yoon, C. Hicke, Z. Y. Zhang, and E. Wang, Phys. Rev. B 78, 115435 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115435
12.
12. S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch, and H. C. Dorn, Nature 401, 55 (1999).
http://dx.doi.org/10.1038/43415
13.
13. H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).
http://dx.doi.org/10.1088/0034-4885/63/6/201
14.
14. D. S. Deak, F. Silly, K. Porfyrakis, and M. R. Castell, Nanotechnology 18, 075301 (2007).
http://dx.doi.org/10.1088/0957-4484/18/7/075301
15.
15. K. Kobayashi, Y. Sano, and S. Nagase, J. Comput. Chem. 22, 1353 (2001).
http://dx.doi.org/10.1002/jcc.1093
16.
16. M. M. Olmstead, A. D. Bettencourt-Dias, J. C. Duchamp, S. Stevenson, H. C. Dorn, and A. L. Balch, J. Am. Chem. Soc. 122, 12220 (2000).
http://dx.doi.org/10.1021/ja001984v
17.
17. C. Nörenberg, D. F. Leigh, D. Cattaneo, K. Porfyrakis, A. Li Bassi, C. S. Casari, M. Passoni, J. H. G. Owen, and G. A. D. Briggs, J. Phys. Conf. Ser. 100, 052080 (2008).
http://dx.doi.org/10.1088/1742-6596/100/5/052080
18.
18. M. Sakaino, Y. Sun, and F. Morimoto, J. Appl. Phys. 115, 023701 (2014).
http://dx.doi.org/10.1063/1.4861184
19.
19. Y. Sun, B. Onwona-Agyeman, and T. Miyasato, Jpn. J. Appl. Phys., Part 1 50, 031601 (2011).
http://dx.doi.org/10.7567/JJAP.50.031601
20.
20. N. Karl, Synth. Met. 133–134, 649 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00398-3
21.
21. D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.542
22.
22. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic Press, New York, 1970), p. 27.
23.
23. J. G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
24.
24. N. A. Drokin, G. A. Kokourov, G. A. Glushchenko, I. V. Osipova, A. N. Maslennikov, and G. N. Churilov, Phys. Solid State 54, 844 (2012).
http://dx.doi.org/10.1134/S1063783412040063
25.
25. J. R. Macdonaid, Ann. Biomed. Eng. 20, 289 (1992).
http://dx.doi.org/10.1007/BF02368532
26.
26. N. A. Drokin, A. V. Fedotova, G. A. Glushchenko, and G. N. Churilov, Phys. Solid State 52, 657 (2010).
http://dx.doi.org/10.1134/S1063783410030303
27.
27. J. K. J. van Duren, V. D. Mihailetchi, P. W. M. Blom, T. van Woudenbergh, J. C. Hummelen, M. T. Rispens, R. A. J. Janssen, and M. M. Wienk, J. Appl. Phys. 94, 4477 (2003).
http://dx.doi.org/10.1063/1.1604959
28.
28. C. Tang, W. Zhu, and K. Deng, ACTA Chim. Sinica 67, 1421 (2009); available at http://sioc-journal.cn/Jwk_hxxb/EN/abstract/abstract329593.shtml.
29.
29. M. Shiraishi, K. Shibata, R. Maruyama, and M. Ata, Phys. Rev. B 68, 235414 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.235414
30.
30. N. Hayashi, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 92, 3784 (2002).
http://dx.doi.org/10.1063/1.1504495
31.
31. C. Sommerhalter, T. Glatzel, T. W. Matthes, A. Jaeger-Waldau, and M. C. Lux-Steiner, Appl. Surf. Sci. 157, 263 (2000).
http://dx.doi.org/10.1016/S0169-4332(99)00537-1
32.
32. J. M. Campanera, C. B. Marilyn, M. Olmstead, A. L. Balch, and J. M. Poblet, J. Phys. Chem. A 106, 12356 (2002).
http://dx.doi.org/10.1021/jp021882m
33.
33. S. Ptasinska, O. Echt, S. Denifl, M. Stano, P. Sulzer, F. Zappa, A. Stamatovic, P. Scheier, and T. D. Mark, J. Phys. Chem. A 110, 8451 (2006).
http://dx.doi.org/10.1021/jp060324v
34.
34. A. A. Popov, J. Comput. Theor. Nanosci. 6, 292 (2009).
http://dx.doi.org/10.1166/jctn.2009.1037
35.
35. G. B. Alers, B. Golding, A. R. Kortan, R. C. Haddon, and F. A. Theil, Science 257, 511 (1992).
http://dx.doi.org/10.1126/science.257.5069.511
36.
36. A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan, Appl. Phys. Lett. 59, 2109 (1991).
http://dx.doi.org/10.1063/1.106095
37.
37. C. J. Nuttall, Y. Hayashi, K. Yamazaki, T. Mitani, and Y. Iwasa, Adv. Mater. 14, 293 (2002).
http://dx.doi.org/10.1002/1521-4095(20020219)14:4<293::AID-ADMA293>3.0.CO;2-I
38.
38. Y. Iwasa and C. J. Nuttall, Synth. Met. 135–136, 773 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00847-0
39.
39. B. Pevzner, A. F. Hebard, and M. S. Dresselhaus, Phys. Rev. B 55, 16439 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.16439
40.
40. M. Gu, T. Tang, C. Hu, and D. Feng, Phys. Rev. B 58, 659 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.659
41.
41. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes ( Academic, New York, 1996).
42.
42. R. C. Weast, CRC Handbook of Chemistry and Physics ( CRC Press, West Palm Beach, FL, 1992).
43.
43. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
http://dx.doi.org/10.1103/PhysRev.80.72
44.
44. H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
http://dx.doi.org/10.1103/PhysRev.120.1951
45.
45. K. Prassides, H. W. Kroto, R. Taylor, D. R. M. Walton, W. I. F. David, J. Tomkinson, R. C. Haddon, M. J. Rosseinsky, and D. W. Murphy, Carbon 30, 1277 (1992).
http://dx.doi.org/10.1016/0008-6223(92)90068-8
46.
46. T. Matsuo, H. Suga, W. I. F. David, R. M. Ibberson, P. Bernier, A. Zahab, C. Fabre, A. Rassat, and A. Dworkin, Solid State Commun. 83, 711 (1992).
http://dx.doi.org/10.1016/0038-1098(92)90149-4
47.
47. L. Pintschovius, B. Renker, F. Gompf, R. Heid, S. L. Chaplot, M. Haluska, and H. Kuzmany, Phys. Rev. Lett. 69, 2662 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2662
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/3/10.1063/1.4887796
Loading
/content/aip/journal/jap/116/3/10.1063/1.4887796
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/3/10.1063/1.4887796
2014-07-15
2016-12-06

Abstract

Electrical transport properties of the nanocrystalline ErN@C with fcc crystal structure were characterized by measuring both temperature-dependent d.c. conductance and a.c. impedance. The results showed that the ErN@C sample has characteristics of -type semiconductor and an electron affinity larger than work function of gold metal. The ErN@C/Au interface has an ohmic contact behavior and the contact resistance was very small as compared with bulk resistance of the ErN@C sample. The charge carriers in the sample were thermally excited from various trapped levels and both acoustic phonon and ionic scatterings become a dominant process in different temperature regions, respectively. At temperatures below 250 K, the activation energy of the trapped carrier was estimated to be 35.5 meV, and the ionic scattering was a dominant mechanism. On the other hand, at temperatures above 350 K, the activation energy was reduced to 15.9 meV, and the acoustic phonon scattering was a dominant mechanism. In addition, a polarization effect from the charge carrier was observed at low frequencies below 2.0 MHz, and the relative intrinsic permittivity of the ErN@C nanocrystalline lattice was estimated to be 4.6 at frequency of 5.0 MHz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/3/1.4887796.html;jsessionid=dlHAt5QwZp7AwdiwxYouEcsH.x-aip-live-03?itemId=/content/aip/journal/jap/116/3/10.1063/1.4887796&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/3/10.1063/1.4887796&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/3/10.1063/1.4887796'
Right1,Right2,Right3,