Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Xenogiannopoulou, S. Couris, E. Koudoumas, N. Tagmatarchis, T. Inoue, and H. Shinohara, Chem. Phys. Lett. 394, 14 (2004).
2. D. W. Cagle, T. P. Thrash, M. Alford, L. P. F. Chibante, G. J. Ehrhardt, and L. J. Wilson, J. Am. Chem. Soc. 118, 8043 (1996).
3. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Nature 417, 722 (2002).
4. T. I. Smirnova, A. I. Smirnov, T. G. Chadwick, and K. L. Walker, Chem. Phys. Lett. 453, 233 (2008).
5. W. Harneit, Phys. Rev. A 65, 032322 (2002).
6. A. Ardavan, M. Austwick, S. C. Benjamin, G. A. D. Briggs, T. J. S. Dennis, A. Ferguson, D. G. Hasko, M. Kanai, A. N. Khlobystov, B. W. Lovett, G. W. Morley, R. A. Oliver, D. G. Pettifor, K. Porfyrakis, J. H. Reina, J. H. Rice, J. D. Smith, R. A. Taylor, D. A. Williams, C. Adelmann, H. Mariette, and R. J. Hamers, Philos. Trans. R. Soc. London, Ser. A 361, 1473 (2003).
7. S. C. Benjamin, A. Ardavan, G. A. D. Briggs, D. A. Britz, D. Gunlycke, J. Jefferson, M. A. G. Jones, D. F. Leigh, B. W. Lovett, A. N. Khlobystov, S. A. Lyon, J. J. L. Morton, K. Porfyrakis, M. R. Sambrook, and A. M. Tyryshkin, J. Phys. Condens. Matter 18, S867 (2006).
8. T. A. Murphy, T. Pawlik, A. Weidinger, M. Hohne, R. Alcala, and J. M. Spaeth, Phys. Rev. Lett. 77, 1075 (1996).
9. S. Sato, S. Seki, G. Luo, M. Suzuki, J. Lu, S. Nagase, and T. Akasaka, J. Am. Chem. Soc. 134, 11681 (2012).
10. O. Tishchenko and D. G. Truhlar, J. Phys. Chem. Lett. 4, 422 (2013).
11. S. Y. Yang, M. Yoon, C. Hicke, Z. Y. Zhang, and E. Wang, Phys. Rev. B 78, 115435 (2008).
12. S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch, and H. C. Dorn, Nature 401, 55 (1999).
13. H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).
14. D. S. Deak, F. Silly, K. Porfyrakis, and M. R. Castell, Nanotechnology 18, 075301 (2007).
15. K. Kobayashi, Y. Sano, and S. Nagase, J. Comput. Chem. 22, 1353 (2001).
16. M. M. Olmstead, A. D. Bettencourt-Dias, J. C. Duchamp, S. Stevenson, H. C. Dorn, and A. L. Balch, J. Am. Chem. Soc. 122, 12220 (2000).
17. C. Nörenberg, D. F. Leigh, D. Cattaneo, K. Porfyrakis, A. Li Bassi, C. S. Casari, M. Passoni, J. H. G. Owen, and G. A. D. Briggs, J. Phys. Conf. Ser. 100, 052080 (2008).
18. M. Sakaino, Y. Sun, and F. Morimoto, J. Appl. Phys. 115, 023701 (2014).
19. Y. Sun, B. Onwona-Agyeman, and T. Miyasato, Jpn. J. Appl. Phys., Part 1 50, 031601 (2011).
20. N. Karl, Synth. Met. 133–134, 649 (2003).
21. D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
22. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic Press, New York, 1970), p. 27.
23. J. G. Simmons, Phys. Rev. 155, 657 (1967).
24. N. A. Drokin, G. A. Kokourov, G. A. Glushchenko, I. V. Osipova, A. N. Maslennikov, and G. N. Churilov, Phys. Solid State 54, 844 (2012).
25. J. R. Macdonaid, Ann. Biomed. Eng. 20, 289 (1992).
26. N. A. Drokin, A. V. Fedotova, G. A. Glushchenko, and G. N. Churilov, Phys. Solid State 52, 657 (2010).
27. J. K. J. van Duren, V. D. Mihailetchi, P. W. M. Blom, T. van Woudenbergh, J. C. Hummelen, M. T. Rispens, R. A. J. Janssen, and M. M. Wienk, J. Appl. Phys. 94, 4477 (2003).
28. C. Tang, W. Zhu, and K. Deng, ACTA Chim. Sinica 67, 1421 (2009); available at
29. M. Shiraishi, K. Shibata, R. Maruyama, and M. Ata, Phys. Rev. B 68, 235414 (2003).
30. N. Hayashi, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 92, 3784 (2002).
31. C. Sommerhalter, T. Glatzel, T. W. Matthes, A. Jaeger-Waldau, and M. C. Lux-Steiner, Appl. Surf. Sci. 157, 263 (2000).
32. J. M. Campanera, C. B. Marilyn, M. Olmstead, A. L. Balch, and J. M. Poblet, J. Phys. Chem. A 106, 12356 (2002).
33. S. Ptasinska, O. Echt, S. Denifl, M. Stano, P. Sulzer, F. Zappa, A. Stamatovic, P. Scheier, and T. D. Mark, J. Phys. Chem. A 110, 8451 (2006).
34. A. A. Popov, J. Comput. Theor. Nanosci. 6, 292 (2009).
35. G. B. Alers, B. Golding, A. R. Kortan, R. C. Haddon, and F. A. Theil, Science 257, 511 (1992).
36. A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan, Appl. Phys. Lett. 59, 2109 (1991).
37. C. J. Nuttall, Y. Hayashi, K. Yamazaki, T. Mitani, and Y. Iwasa, Adv. Mater. 14, 293 (2002).<293::AID-ADMA293>3.0.CO;2-I
38. Y. Iwasa and C. J. Nuttall, Synth. Met. 135–136, 773 (2003).
39. B. Pevzner, A. F. Hebard, and M. S. Dresselhaus, Phys. Rev. B 55, 16439 (1997).
40. M. Gu, T. Tang, C. Hu, and D. Feng, Phys. Rev. B 58, 659 (1998).
41. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes ( Academic, New York, 1996).
42. R. C. Weast, CRC Handbook of Chemistry and Physics ( CRC Press, West Palm Beach, FL, 1992).
43. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
44. H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
45. K. Prassides, H. W. Kroto, R. Taylor, D. R. M. Walton, W. I. F. David, J. Tomkinson, R. C. Haddon, M. J. Rosseinsky, and D. W. Murphy, Carbon 30, 1277 (1992).
46. T. Matsuo, H. Suga, W. I. F. David, R. M. Ibberson, P. Bernier, A. Zahab, C. Fabre, A. Rassat, and A. Dworkin, Solid State Commun. 83, 711 (1992).
47. L. Pintschovius, B. Renker, F. Gompf, R. Heid, S. L. Chaplot, M. Haluska, and H. Kuzmany, Phys. Rev. Lett. 69, 2662 (1992).

Data & Media loading...


Article metrics loading...



Electrical transport properties of the nanocrystalline ErN@C with fcc crystal structure were characterized by measuring both temperature-dependent d.c. conductance and a.c. impedance. The results showed that the ErN@C sample has characteristics of -type semiconductor and an electron affinity larger than work function of gold metal. The ErN@C/Au interface has an ohmic contact behavior and the contact resistance was very small as compared with bulk resistance of the ErN@C sample. The charge carriers in the sample were thermally excited from various trapped levels and both acoustic phonon and ionic scatterings become a dominant process in different temperature regions, respectively. At temperatures below 250 K, the activation energy of the trapped carrier was estimated to be 35.5 meV, and the ionic scattering was a dominant mechanism. On the other hand, at temperatures above 350 K, the activation energy was reduced to 15.9 meV, and the acoustic phonon scattering was a dominant mechanism. In addition, a polarization effect from the charge carrier was observed at low frequencies below 2.0 MHz, and the relative intrinsic permittivity of the ErN@C nanocrystalline lattice was estimated to be 4.6 at frequency of 5.0 MHz.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd