Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Chen, H. Feng, and J. Li, “ Graphene oxide: Preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 60276053 (2012).
2. C. Rao, K. Biswas, K. Subrahmanyam, and A. Govindaraj, “ Graphene, the new nanocarbon,” J. Mater. Chem. 19(17), 24572469 (2009).
3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “ Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902907 (2008).
4. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385388 (2008).
5. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “ Graphene-based ultracapacitors,” Nano Lett. 8(10), 34983502 (2008).
6. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “ High-frequency, scaled graphene transistors on diamond-like carbon,” Nature 472(7341), 7478 (2011);
6. F. Schwierz, “ Graphene transistors,” Nat. Nanotechnol. 5(7), 487496 (2010).
7. L. Feng, L. Wu, and X. Qu, “ New horizons for diagnostics and therapeutic applications of graphene and graphene oxide,” Adv. Mater. 25(2), 168186 (2013).
8. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “ Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 10581063 (2009).
9. E. Morales-Narváez and A. Merkoçi, “ Graphene oxide as an optical biosensing platform,” Adv. Mater. 24(25), 32983308 (2012).
10. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B. H. Hong, and D.-H. Min, “ Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46, 2211–2224 (2013).
11. J.-L. Chen, X.-P. Yan, K. Meng, and S.-F. Wang, “ Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine,” Anal. Chem. 83(22), 87878793 (2011).
12. H. Ren, C. Wang, J. Zhang, X. Zhou, D. Xu, J. Zheng, S. Guo, and J. Zhang, “ DNA cleavage system of nanosized graphene oxide sheets and copper ions,” ACS Nano 4(12), 71697174 (2010).
13. Y. Pu, Z. Zhu, D. Han, H. Liu, J. Liu, J. Liao, K. Zhang, and W. Tan, “ Insulin-binding aptamer-conjugated graphene oxide for insulin detection,” Analyst 136(20), 41384140 (2011);
13. H. Wang, Q. Zhang, X. Chu, T. Chen, J. Ge, and R. Yu, “ Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase‐3 activation imaging in live cells,” Angew. Chem. Int. Ed. 50(31), 70657069 (2011).
14. Y. Liu, X. Dong, and P. Chen, “ Biological and chemical sensors based on graphene materials,” Chem. Soc. Rev. 41(6), 22832307 (2012).
15. Y. Wang, Z. Li, D. Hu, C.-T. Lin, J. Li, and Y. Lin, “ Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells,” J. Am. Chem. Soc. 132(27), 92749276 (2010).
16. X.-H. Zhao, R.-M. Kong, X.-B. Zhang, H.-M. Meng, W.-N. Liu, W. Tan, G.-L. Shen, and R.-Q. Yu, “ Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity,” Anal. Chem. 83(13), 50625066 (2011).
17. Q. Wan, H. Cai, Y. Liu, H. Song, H. Liao, S. Liu, and N. Yang, “ Graphene nanoplatelets: Electrochemical properties and applications for oxidation of endocrine-disrupting chemicals,” Chem. - Eur. J. 19(10), 34833489 (2013).
18. Y. Li, X. Li, C. Dong, J. Qi, and X. Han, “ A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals,” Carbon 48(12), 34273433 (2010).
19. K. Rotti, J. Stevens, D. Watson, and C. Longcope, “ Estriol concentrations in plasma of normal, non-pregnant women,” Steroids 25(6), 807816 (1975).
20. S. Y. Kim, S. K. Kim, J. S. Lee, I. K. Kim, and K. Lee, “ The prediction of adverse pregnancy outcome using low unconjugated estriol in the second trimester of pregnancy without risk of Down's syndrome,” Yonsei Med. J. 41(2), 226 (2000); available at
21. E. Cavalieri, K. Frenkel, J. G. Liehr, E. Rogan, and D. Roy, “ Estrogens as endogenous genotoxic agents—DNA adducts and mutations,” J. Natl. Cancer Inst. Monogr. 2000(27), 7594.
22. K. R. Rogers, “ Biosensors for environmental applications,” Biosens. Bioelectron. 10(6), 533541 (1995);
22. M. Badihi‐Mossberg, V. Buchner, and J. Rishpon, “ Electrochemical biosensors for pollutants in the environment,” Electroanalysis 19(19‐20), 20152028 (2007).
23. R. Haning, Jr., K. Satin, M. Lynskey, R. Levin, and L. Speroff, “ A direct radioimmunoassay for estriol-16-glucuronide in urine for monitoring pregnancy and induction of ovulation,” Am. J. Obstet. Gynecol. 128(7), 793802 (1977); available at
24. T. Guo, J. Gu, O. P. Soldin, R. J. Singh, and S. J. Soldin, “ Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization,” Clin. Biochem. 41(9), 736741 (2008).
25. G.-G. Ying, R. S. Kookana, and Z. Chen, “ On-line solid-phase extraction and fluorescence detection of selected endocrine disrupting chemicals in water by high-performance liquid chromatography,” J. Environ. Sci. Health, Part B 37(3), 225234 (2002).
26. S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “ Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry method,” Anal. Chem. 76(23), 69987006 (2004).
27. M. Schöneshöfer, T. K. Dhar, and D. Ioanides, “ Total urinary estriol determined by “on-line” liquid chromatography with ultraviolet detection,” Clin. Chem. 32(10), 19481950 (1986); available at
28. N. Varghese, U. Mogera, A. Govindaraj, A. Das, P. K. Maiti, A. K. Sood, and C. Rao, “ Binding of DNA nucleobases and nucleosides with graphene,” ChemPhysChem 10(1), 206210 (2009).
29. W. S. Hummers and R. E. Offeman, “ Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
30. Y. Wu, S. Liu, H. Wang, X. Wang, X. Zhang, and G. Jin, “ A novel solvothermal synthesis of Mn3O4 graphene composites for supercapacitors,” Electrochim. Acta 90, 210218 (2012).
31. Y. Si and E. T. Samulski, “ Synthesis of water soluble graphene,” Nano Lett. 8(6), 16791682 (2008).
32. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “ Graphene oxide dispersions in organic solvents,” Langmuir 24(19), 1056010564 (2008).
33. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “ The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228240 (2010).
34. D. Li, M. B. Müller, S. Gilge, R. B. Kaner, and G. G. Wallace, “ Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3, 101105 (2008).
35. H. Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A. A. Ashkarran, and M. Mahmoudi, “ Graphene: Promises, facts, opportunities, and challenges in nanomedicine,” Chemical Rev. 113(5), 34073424 (2013).
36. F. Ortmann, W. G. Schmidt, and F. Bechstedt, “ Attracted by long-range electron correlation: Adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
37. S. Kochmann, T. Hirsch, and O. S. Wolfbeis, “ Graphenes in chemical sensors and biosensors,” TrAC, Trends Anal. Chem. 39, 87113 (2012).
38. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, “ Reduction of graphene oxide vial-ascorbic acid,” Chem. Commun. 46(7), 11121114 (2010).
39. S. Y. Park, H. Y. Lee, Y. M. Yoon, and N. G. Her, “ Ultrasonic degradation of endocrine disrupting compounds in seawater and brackish water,” Environ. Eng. Res. 16(3), 137148 (2011).

Data & Media loading...


Article metrics loading...



Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd