Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/3/10.1063/1.4890318
1.
1. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1949).
http://dx.doi.org/10.1088/0034-4885/12/1/308
2.
2. F. P. Fehlner and N. F. Mott, Oxid. Met. 2, 59 (1970).
http://dx.doi.org/10.1007/BF00603582
3.
3. C. F. McConville, D. L. Seymour, D. P. Woodruff, and S. Bao, Surf. Sci. 188, 1 (1987).
http://dx.doi.org/10.1016/S0039-6028(87)80138-3
4.
4. H. Brune, J. Wintterlin, R. J. Behm, and G. Ertl, Phys. Rev. Lett. 68, 624 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.624
5.
5. C. Berg, S. Raaen, A. Borg, J. N. Andersen, E. Lundgren, and R. Nyholm, Phys. Rev. B 47, 13063 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13063
6.
6. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, C. G. Borsboom, and E. J. Mittemeijer, Appl. Surf. Sci. 144, 11 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00755-7
7.
7. M. Schmid, G. Leonardelli, R. Tscheliessnig, A. Biedermann, and P. Varga, Surf. Sci. 478, L355 (2001).
http://dx.doi.org/10.1016/S0039-6028(01)00967-0
8.
8. P. C. Snijders, L. P. H. Jeurgens, and W. G. Sloof, Surf. Sci. 496, 97 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01591-6
9.
9. D. Starodub, T. Gustafsson, and E. Garfunkel, Surf. Sci. 552, 199 (2004).
http://dx.doi.org/10.1016/j.susc.2004.01.019
10.
10. N. Cai, G. Zhou, K. Müller, and D. E. Starr, PRL 107, 035502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.035502
11.
11. N. Cai, G. Zhou, K. Müller, and D. E. Starr, Phys. Rev. B 84, 125445 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125445
12.
12. A. Hasnaoui, O. Politano, J. M. Salazar, and G. Aral, Phys. Rev. B 73, 035427 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035427
13.
13. W. Zhou and D. M. Kolb, Surf. Sci. 573, 176 (2004).
http://dx.doi.org/10.1016/j.susc.2004.09.022
14.
14. S. Kayaa, H. Ogasawarab, L.-Åke Näslund, J.-O. Forsell, H. Sanchez Casalonguea, D. J. Miller, and A. Nilssona, Catal. Today 205, 101105 (2013).
http://dx.doi.org/10.1016/j.cattod.2012.08.005
15.
15. A. Davoodi, J. Pan, C. Leygraf, and S. Norgren, J. Electrochem. Soc. 155(4), C138C146 (2008).
http://dx.doi.org/10.1149/1.2834454
16.
16. L. Li, J. Mater. Sci. Technol. 16, 50 (2000).
17.
17. J. W. Schultze and M. M. Lohrengel, Electrochim. Acta 45, 2499 (2000).
http://dx.doi.org/10.1016/S0013-4686(00)00347-9
18.
18. S. Ferrer, M. D. Ackermann, and E. Lundgren, MRS Bull. 32, 1010 (2007).
http://dx.doi.org/10.1557/mrs2007.209
19.
19. J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P. A. Carlsson, M. Skoglundh, and E. Lundgren, Science 343, 758 (2014).
http://dx.doi.org/10.1126/science.1246834
20.
20. R. Essehli, B. El Bali, A. Falk, S. benmokhtar, B. Manoun, Y. Zhang, X. J. Zhang, Z. Zhou, and H. Fuess, J. Alloys Compds. 530, 178 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.03.103
21.
21. F. U. Renner, A. Stierle, H. Dosch, D. M. Kolb, T.-L. Lee, and J. Zegenhagen, Nature 439, 707 (2006).
http://dx.doi.org/10.1038/nature04465
22.
22. F. Mansfeld and M. W. Kendig, J. Electrochem. Soc. 135, 828 (1988).
http://dx.doi.org/10.1149/1.2095786
23.
23. S. Ferrer and F. Comin, Rev. Sci. Instrum. 66, 1674 (1995).
http://dx.doi.org/10.1063/1.1145879
24.
24. M. L. Foresti, A. Pozzi, M. Innocenti, G. Pezzatini, F. Loglio, E. Salvietti, A. Giusti, F. D'Anca, R. Felici, and F. Borgatti, Electrochim. Acta 51, 5532 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.02.031
25.
25. L. G. Parratt, Phys. Rev. 95, 359 (1954).
http://dx.doi.org/10.1103/PhysRev.95.359
26.
26. L. Névot and P. Croce, Rev. Phys. Appl. 15(3), 761 (1980).
http://dx.doi.org/10.1051/rphysap:01980001503076100
27.
27. M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy ( John Wiley & Sin, Inc., 2008), p. 236.
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/3/10.1063/1.4890318
Loading
/content/aip/journal/jap/116/3/10.1063/1.4890318
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/3/10.1063/1.4890318
2014-07-16
2016-09-26

Abstract

We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by x-ray reflectivity, electrochemical impedance spectroscopy and scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/3/1.4890318.html;jsessionid=B-AFLDn9OVEoNnsThTqchX4k.x-aip-live-06?itemId=/content/aip/journal/jap/116/3/10.1063/1.4890318&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/3/10.1063/1.4890318&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/3/10.1063/1.4890318'
Right1,Right2,Right3,