Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/3/10.1063/1.4890714
1.
1. S. B. Kormer, Sov. Phys. Usp. 11, 229 (1968).
http://dx.doi.org/10.1070/PU1968v011n02ABEH003814
2.
2. J. L. Wise and L. C. Chhabildas, in Shock Waves in Condensed Matter—1985, edited by Y. M. Gupta ( Plenum, New York, 1986), pp. 441454.
3.
3. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 41, 4208 (1970).
http://dx.doi.org/10.1063/1.1658439
4.
4. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
http://dx.doi.org/10.1063/1.1660986
5.
5. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
http://dx.doi.org/10.1063/1.2336749
6.
6. M. D. Furnish, L. C. Chhabildas, and W. D. Reinhart, Int. J. Impact Eng. 23, 261 (1999).
http://dx.doi.org/10.1016/S0734-743X(99)00078-0
7.
7. R. E. Setchell, J. Appl. Phys. 50, 8186 (1979).
http://dx.doi.org/10.1063/1.325959
8.
8. D. Hayes, J. Appl. Phys. 89, 6484 (2001).
http://dx.doi.org/10.1063/1.1369409
9.
9. G. Huser, M. Koenig, A. Benuzzi-Mounaix, E. Henry, T. Vinci, B. Faral, M. Tomasini, B. Telaro, and D. Batani, Phys. Plasmas 11, L61 (2004).
http://dx.doi.org/10.1063/1.1785154
10.
10. J. Clérouin, Y. Laudernet, and V. Recoules, Phys. Rev. B 72, 155122 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155122
11.
11. B. J. Jensen, D. B. Holtkamp, P. A. Rigg, and D. H. Dolan, J. Appl. Phys. 101, 13523 (2007).
http://dx.doi.org/10.1063/1.2407290
12.
12. B. J. Jensen, D. B. Holtkamp, P. A. Rigg, and D. H. Dolan, J. Appl. Phys. 106, 049901 (2009).
http://dx.doi.org/10.1063/1.3213362
13.
13. B. M. LaLone, O. V. Fat'yanov, J. R. Asay, and Y. M. Gupta, J. Appl. Phys. 103, 093505 (2008).
http://dx.doi.org/10.1063/1.2912500
14.
14. D. E. Fratanduono, T. R. Boehly, M. A. Barrios, D. D. Meyerhofer, J. H. Eggert, R. F. Smith, D. G. Hicks, P. M. Celliers, D. G. Braun, and G. W. Collins, J. Appl. Phys. 109, 123521 (2011).
http://dx.doi.org/10.1063/1.3599884
15.
15. D. E. Fratanduono, R. F. Smith, T. R. Boehly, J. H. Eggert, D. G. Braun, and G. W. Collins, Rev. Sci. Instrum. 83, 073504 (2012).
http://dx.doi.org/10.1063/1.4732823
16.
16. P. A. Rigg, R. J. Scharff, and R. S. Hixson, J. Phys.: Conf. Ser. 500, 032018 (2014).
http://dx.doi.org/10.1088/1742-6596/500/3/032018
17.
17. A. C. Mitchell and W. J. Nellis, J. Appl. Phys. 52, 3363 (1981).
http://dx.doi.org/10.1063/1.329160
18.
18. A. H. Jones, W. M. Isbell, and C. J. Maiden, J. Appl. Phys. 37, 3493 (1966).
http://dx.doi.org/10.1063/1.1708887
19.
19. T. S. Duffy and T. J. Ahrens, J. Appl. Phys. 82, 4259 (1997).
http://dx.doi.org/10.1063/1.366233
20.
20. J. Hu, C. Dai, Y. Yu, Z. Liu, Y. Tan, X. Zhou, H. Tan, L. Cai, and Q. Wu, J. Appl. Phys. 111, 033511 (2012).
http://dx.doi.org/10.1063/1.3681815
21.
21. W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979).
http://dx.doi.org/10.1063/1.1135672
22.
22. M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005).
http://dx.doi.org/10.1063/1.1891746
23.
23. R. W. Lemke, M. D. Knudson, C. A. Hall, T. A. Haill, M. P. Dejarlais, J. R. Asay, and T. A. Mehlhorn, Phys. Plasmas 10, 1092 (2003).
http://dx.doi.org/10.1063/1.1554740
24.
24. R. W. Lemke, M. D. Knudson, A. C. Robinson, T. A. Haill, K. W. Struve, J. R. Asay, and T. A. Mehlhorn, Phys. Plasmas 10, 1867 (2003).
http://dx.doi.org/10.1063/1.1557530
25.
25. J. W. Forbes, Shock Wave Compression of Condensed Matter: A Primer ( Springer, New York, 2012).
26.
26.LASL Shock Hugoniot Data, edited by S. P. Marsh ( University of California Press, Berkely, 1980).
27.
27. M. D. Knudson and M. P. Desjarlais, Phys. Rev. 88, 184107 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184107
28.
28. W. J. Carter, High Temp.-High Press. 5, 313 (1973).
29.
29. P. T. Boggs, R. H. Byrd, and R. B. Schnabel, Siam. J. Sci. Stat. Comput. 8, 1052 (1987).
http://dx.doi.org/10.1137/0908085
30.
30. J. W. Zwolak, P. T. Boggs, and L. T. Watson, ACM Trans. Math. Softw. 33, 27 (2007).
http://dx.doi.org/10.1145/1268776.1268782
31.
31. G. Chew and T. Walczyk, Anal. Bioanal. Chem. 402, 2463 (2012).
http://dx.doi.org/10.1007/s00216-011-5698-4
32.
32. D. R. Hardesty, J. Appl. Phys. 47, 1994 (1976).
http://dx.doi.org/10.1063/1.322925
33.
33. S. C. Jones and Y. M. Gupta, J. Appl. Phys. 88, 5671 (2000).
http://dx.doi.org/10.1063/1.1319329
34.
34. S. C. Jones, M. C. Robinson, and Y. M. Gupta, J. Appl. Phys. 93, 1023 (2003).
http://dx.doi.org/10.1063/1.1530716
35.
35. L. M. Barker, Behavior in Dense Media Under High Dynamic Pressures ( Gordon and Breech, New York, 1968), p. 483.
36.
36. J. Wackerle, H. L. Stacy, and J. C. Dallman, Proc. SPIE 832, 72 (1988).
http://dx.doi.org/10.1117/12.942211
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/3/10.1063/1.4890714
Loading
/content/aip/journal/jap/116/3/10.1063/1.4890714
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/3/10.1063/1.4890714
2014-07-18
2016-09-30

Abstract

Lithium fluoride (LiF) is a common window material used in shock- and ramp-compression experiments because it displays a host of positive attributes in these applications. Most commonly, it is used to maintain stress at an interface and velocimetry techniques are used to record the particle velocity at that interface. In this application, LiF remains transparent to stresses up to 200 GPa. In this stress range, LiF has an elastic-plastic response with a very low (<0.5 GPa) elastic precursor and exhibits no known solid-solid phase transformations. However, because the density dependence of the refractive index of LiF does not follow the Gladstone-Dale relation, the measured particle velocity at this interface is not the particle velocity and must be corrected. For that reason, the measured velocity is often referred to as the velocity in these types of experiments. In this article, we describe a series of shock-compression experiments that have been performed to determine the refractive index of LiF at the two most commonly used wavelengths (532 nm and 1550 nm) between 35 and 200 GPa to high precision. A modified form of the Gladstone-Dale relation was found to work best to fit the determined values of refractive index. In addition, we provide a direct relationship between the and particle velocity to correct experimentally obtained wave profiles by others using these velocimetry techniques.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/3/1.4890714.html;jsessionid=znMrXpaoyLm7f2JP_eAH3dyZ.x-aip-live-06?itemId=/content/aip/journal/jap/116/3/10.1063/1.4890714&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/3/10.1063/1.4890714&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/3/10.1063/1.4890714'
Right1,Right2,Right3,