Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. M. Pollock, T. L. Keith, and R. F. Highsmith, FASEB J. 9, 11961204 (1995).
2. W. J. Wasilenko, J. Cooper, A. J. Palad, K. D. Somers, P. F. Blackmore, J. S. Rhim, G. L. Wright, Jr., and P. F. Schellhammer, Prostate 30, 167173 (1997).<167::AID-PROS4>3.0.CO;2-J
3. A. Kovacs, J. Sadowski, T. Kasama, M. Duchamp, and R. E. Dunin-Borkowski, J. Phys. D: Appl. Phys. 46, 145309 (2013).
4. C.-T. Kuo, C.-L. Chiang, Ruby Y.-J. Huang, H. Lee, and A. M. Wo, NPG Asia Mater. 4, e27 (2012).
5. L.-C. Hsiung, C.-L. Chiang, C.-H. Wang, Y.-H. Huang, C.-T. Kuo, J.-Y. Cheng, C.-H. Lin, V. Wu, H.-Y. Chou, D.-S. Jong, H. Lee, and A. M. Wo, Lab Chip 11, 23332342 (2011).
6. K. Ozasa, J. Lee, S. Song, M. Hara, and M. Maeda, Lab Chip 13, 40334039 (2013).
7. M. W. Toepke and D. J. Beebe, Lab Chip 6, 14841486 (2006).
8. G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, Anal. Chem. 77, 14141422 (2005).
9.See supplementary material at for four images showing the permeation testing with different membrane thicknesses (Figure S1), the time-sequenced responses of the signal intensities (Figure S2), the relative intensity of postive control versus ligand concentrations (Figure S3), and the surface characteristics of the pretreated PDMS (Figure S4).[Supplementary Material]
10. C. Mayer, J. Wachtler, M. Kamleiter, and P. Grafe, Neurosci. Lett. 224, 4952 (1997).
11. J. H. Hong, C. H. Min, B. Jeong, T. Kojiya, E. Morioka, T. Naqai, M. Ikeda, and K. J. Lee, PLoS One 5, e9634 (2010).
12. C.-T. Kuo, C.-L. Chiang, C.-H. Chang, H.-K. Liu, G.-S. Huang, R. Y.-J. Huang, H. Lee, C.-S. Huang, and A. M. Wo, Biomaterials 35, 15621571 (2014).
13. C.-Y. Pan, H. Lee, and C. L. Chen, Neuropharmacology 51, 1826 (2006).
14. J.-H. Park, G. von Maltzahn, L. Zhang, A. M. Derfus, D. Simberg, T. J. Harris, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Small 5, 694700 (2009).
15. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393, 146149 (1998).
16. L. P. Lee and R. Szema, Science 310, 11481150 (2005).
17. K.-H. Jeong, J. Kim, and L. P. Lee, Science 312, 557561 (2006).
18. M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, Nature Mater. 9, 2630 (2010).
19. T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee, and C. W. Chang, Nat. Nanotechnol. 8, 534538 (2013).
20. J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, Adv. Mater. 26, 532569 (2014).

Data & Media loading...


Article metrics loading...



The cellular signal transduction is commonly believed to rely on the direct “contact” or “binding” of the participating molecule reaction that depends positively on the corresponding molecule concentrations. In living systems, however, it is somewhat difficult to precisely match the corresponding rapid “binding,” depending on the probability of molecular collision, existing in the cellular receptor-ligand interactions. Thus, a question arises that if there is another mechanism (i.e., ) that could promote this signal communication. According to this hypothesis, we report a cellular model based on the examination of intracellular calcium concentration to explore whether the unidentified signal delivery in cells exists, a microfluidic device. This device was designed to isolate the cells from directly contacting with the corresponding ligands/molecules by the particular polydimethylsiloxane (PDMS) membranes with different thicknesses. Results show a significant increment of calcium mobilization in human prostate cancer PC-3 cells by the stimulation of endothelin-1, even up to a separated distance of 95 m. In addition, these stimulated signals exhibited a bump-shaped characteristics depending on the membrane thickness. When the PDMS membrane is capped by SiO, a particular trait that resembles the ballistic signal conduction was observed. A theoretical model was developed to describe the signal transport process across the PDMS membrane. Taken together, these results indicate that the unidentified signal (ligand structural information) delivery could occur in cells and be examined by the proposed approach, exhibiting a communication manner. Moreover, this approach and our finding may offer new opportunities to establish a robust and cost-effective platform for the study of cellular biology and new drug development.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd