Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H.-S. Kim, S. H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).
2. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013).
3. S. D. Stranks, G. E. Eperson, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
4. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
5. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
6. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
7. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2013).
8. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6, 1739 (2013).
9. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
10. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
11. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
12. P. Basore, IEEE Trans. Electron Devices 37(2), 337 (1990).
13. P. P. Altermatt, J. Comput. Electron. 10, 314 (2011).
14. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, Appl. Phys. Lett. 95, 123501 (2009).
15. A. Niemegeers and M. Burgelman, J. Appl. Phys. 81, 2881 (1997).
16. P. Nollet, M. Kontges, M. Burgelman, S. Degrave, and R. Reineke-Koch, Thin Solid Films 431–432, 414 (2003).
17. R. Klenk, Thin Solid Films 387, 135 (2001).
18. T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodegard, L. Stolt, U. Rau, H. W. Schock, and J. H. Werner, Thin Solid Films 387, 11 (2001).
19. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
20. T. Minemoto and J. Julayhi, Curr. Appl. Phys. 13, 103 (2013).
21. M. Murata, D. Hironiwa, N. Ashida, J. Chantana, K. Aoyagi, N. Kataoka, and T. Minemoto, Jpn. J. Appl. Phys., Part 1 53, 04ER14 (2014).
22. D. Hironiwa, M. Murata, N. Ashida, T. Zeguo, and T. Minemoto, Jpn. J. Appl. Phys. 53, 071201 (2014).
23. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
24. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 8, 219 (2014).
25. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nat. Mater. 10, 857 (2011).
26. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
27. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000), also, see
28. H. J. Snaith and M. Gratzel, Adv. Mater. 19, 3643 (2007).
29. D. Poplavskyy and J. Nelson, J. Appl. Phys. 93, 341 (2003).
30. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nat. Commun. 5, 3461 (2014).

Data & Media loading...


Article metrics loading...



Device modeling of CHNHPbI Cl perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd