Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/5/10.1063/1.4891982
1.
1. H.-S. Kim, S. H. Im, and N.-G. Park, J. Phys. Chem. C 118, 5615 (2014).
http://dx.doi.org/10.1021/jp409025w
2.
2. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
3.
3. S. D. Stranks, G. E. Eperson, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
4.
4. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
http://dx.doi.org/10.1021/nl400349b
5.
5. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
6.
6. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
7.
7. D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2013).
http://dx.doi.org/10.1038/nphoton.2013.342
8.
8. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6, 1739 (2013).
http://dx.doi.org/10.1039/c3ee40810h
9.
9. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).
http://dx.doi.org/10.1021/nn406020d
10.
10. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
http://dx.doi.org/10.1002/adfm.201302090
11.
11. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
12.
12. P. Basore, IEEE Trans. Electron Devices 37(2), 337 (1990).
http://dx.doi.org/10.1109/16.46362
13.
13. P. P. Altermatt, J. Comput. Electron. 10, 314 (2011).
http://dx.doi.org/10.1007/s10825-011-0367-6
14.
14. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, Appl. Phys. Lett. 95, 123501 (2009).
http://dx.doi.org/10.1063/1.3231438
15.
15. A. Niemegeers and M. Burgelman, J. Appl. Phys. 81, 2881 (1997).
http://dx.doi.org/10.1063/1.363946
16.
16. P. Nollet, M. Kontges, M. Burgelman, S. Degrave, and R. Reineke-Koch, Thin Solid Films 431–432, 414 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00201-3
17.
17. R. Klenk, Thin Solid Films 387, 135 (2001).
http://dx.doi.org/10.1016/S0040-6090(00)01736-3
18.
18. T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodegard, L. Stolt, U. Rau, H. W. Schock, and J. H. Werner, Thin Solid Films 387, 11 (2001).
http://dx.doi.org/10.1016/S0040-6090(00)01726-0
19.
19. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00266-X
20.
20. T. Minemoto and J. Julayhi, Curr. Appl. Phys. 13, 103 (2013).
http://dx.doi.org/10.1016/j.cap.2012.06.019
21.
21. M. Murata, D. Hironiwa, N. Ashida, J. Chantana, K. Aoyagi, N. Kataoka, and T. Minemoto, Jpn. J. Appl. Phys., Part 1 53, 04ER14 (2014).
http://dx.doi.org/10.7567/JJAP.53.04ER14
22.
22. D. Hironiwa, M. Murata, N. Ashida, T. Zeguo, and T. Minemoto, Jpn. J. Appl. Phys. 53, 071201 (2014).
http://dx.doi.org/10.7567/JJAP.53.071201
23.
23. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
http://dx.doi.org/10.1002/pip.822
24.
24. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi RRL 8, 219 (2014).
http://dx.doi.org/10.1002/pssr.201409040
25.
25. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nat. Mater. 10, 857 (2011).
http://dx.doi.org/10.1038/nmat3122
26.
26. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427 (1994).
http://dx.doi.org/10.1016/0921-4526(94)91130-4
27.
27. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000), also, see http://www.elis.ugent.be/ELISgroups/solar/projects/scaps.html.
http://dx.doi.org/10.1016/S0040-6090(99)00825-1
28.
28. H. J. Snaith and M. Gratzel, Adv. Mater. 19, 3643 (2007).
http://dx.doi.org/10.1002/adma.200602085
29.
29. D. Poplavskyy and J. Nelson, J. Appl. Phys. 93, 341 (2003).
http://dx.doi.org/10.1063/1.1525866
30.
30. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nat. Commun. 5, 3461 (2014).
http://dx.doi.org/10.1038/ncomms4461
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/5/10.1063/1.4891982
Loading
/content/aip/journal/jap/116/5/10.1063/1.4891982
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/5/10.1063/1.4891982
2014-08-04
2016-12-03

Abstract

Device modeling of CHNHPbI Cl perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/5/1.4891982.html;jsessionid=BrLz5TJ3y8CXroV--QWMn9dJ.x-aip-live-03?itemId=/content/aip/journal/jap/116/5/10.1063/1.4891982&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/5/10.1063/1.4891982&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/5/10.1063/1.4891982'
Right1,Right2,Right3,