Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Koike and M. Wada, Appl. Phys. Lett. 87, 041911 (2005).
2. J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, J. Appl. Phys. 102, 043527 (2007).
3. M. Haneda, J. Iijima, and J. Koike, Appl. Phys. Lett. 90, 252107 (2007).
4. K. Matsumoto, K. Neishi, H. Itoh, H. Sato, S. Hosaka, and J. Koike, Appl. Phys. Express 2, 036503 (2009).
5. J. M. Ablett, J. C. Woicik, Z. Tőkei, S. List, and E. Dimasi, Appl. Phys. Lett. 94, 042112 (2009).
6. J. G. Lozano, S. Lozano-Perez, J. Bogan, Y. C. Wang, B. Brennan, P. D. Nellist, and G. Hughes, Appl. Phys. Lett. 98, 123112 (2011).
7. C. H. Liu, W. Liu, Y. H. Wang, Y. Wang, Z. An, Z. X. Song, and K. W. Xu, Microelectron Eng. 98, 80 (2012).
8. J. Iijima, Y. Fujii, K. Neishi, and J. Koike, J. Vac. Sci. Technol. B 27, 1963 (2009).
9. C.-Y. Wu, C.-T. Wu, W.-H. Lee, S.-C. Chang, and Y.-L. Wang, J. Alloys Compds. 542, 118 (2012).
10. Z. Czigány, F. Misják, O. Geszti, and G. Radnóczi, Acta Mater. 60, 7226 (2012).
11. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).
12. Á. Barna, G. Radnóczi, and B. Pécz, Preparation Techniques for Transmission Electron Microscopy ( VHC, Cambridge, 1997), Vol. 3, p. 751.
13. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron Eng. 76, 146 (2004).
14. P. D. Desai, H. M. James, and C. Y. Ho, J. Phys. Chem. Ref. Data 13, 1131 (1984).
15. Z. Fan, P. Tsakiropoulos, and A. P. Miodownik, J. Mater. Sci. 29, 141 (1994).
16. V. V. R. N. Rao, S. Mohan, and P. J. Reddy, J. Phys. D 9, 89 (1976).
17. K. Pekala and D. Oleszak, Rev. Adv. Mater. Sci. 18, 197 (2008).
18. V. F. Gantmakher, JETP Lett. 94, 626 (2011).
19. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
20. P. Gibbs, T. M. Harders, and J. H. Smith, J. Phys. F 15, 213 (1985).
21. R. K. Chouhan and A. Mookerjee, J. Magn. Magn. Mater. 323, 868 (2011).
22. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol. A 21, S117 (2003).
23.See for National Physical Laboratory.
24. H. Okamoto, J. Phase Equilib. 19, 180 (1998).
25. P. B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998).
26. F. A. Otter, J. Appl. Phys. 27, 197 (1956).
27. C. A. Domenicali and E. L. Christenson, J. Appl. Phys. 32, 2450 (1961).
28. D. E. Gray, AIP Handbook ( McGraw-Hill, New York, 1972).
29. M. Haneda, N. Ohtsuka, H. Kudo, T. Tabira, M. Sunayama, N. Shimizu, H. Ochimizu, and A. Tsukune, Jpn. J. Appl. Phys. 49, 05FA01 (2010).

Data & Media loading...


Article metrics loading...



Electrical properties and corresponding structural features of Cu-Mn alloy films with potential application as barrier and interconnect layers were studied. Cu-Mn films were deposited by DC magnetron sputtering at room temperature on SiO substrates. Electrical resistivity measurements were made as a function of film composition and temperature. The specific resistivity varies linearly with the Mn content showing a maximum of 205 Ωcm at 80 at. % Mn. The temperature coefficient of resistance (TCR) of all alloy films is low, showing non-metallic conductivity for most compositions. Also a minimum TCR has been observed in the 40–80 at. % Mn range which was attributed to a magnetic transformation around 200–300 K. Electrical resistivity measurements are correlated with the film structure revealed by transmission electron microscopy to clarify the phase regions throughout the composition range. In the 20–40 at. % and 70–80 at. % Mn ranges, two-phase structures were identified, where Cu- or Mn-rich solid solution grains were surrounded by a thin amorphous covering layer. Based on the revealed phase regions and morphologies electron scattering mechanisms in the system were evaluated by combining the Matthiessen's rule and the Mayadas-Schatzkes theory. Grain boundary reflectivity coefficients (r = 0.6–0.8) were calculated from fitting the model to the measurements. The proposed model indicates that, in a binary system, the special arrangement of the two phases results in new scattering mechanisms. The results are of value in optimizing the various parameters needed to produce a suitable barrier layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd