1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Monolayers of MoS2 as an oxidation protective nanocoating material
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/116/8/10.1063/1.4893790
1.
1. D. M. Merkula, P. D. Novikov, V. N. Ivanenkov, V. V. Sapozhnikov, and Y. I. Lyakhin, Oceanology 14, 299300 (1974).
2.
2. M. I. Redondo and C. B. Breslin, Corros. Sci. 49, 17651776 (2007).
http://dx.doi.org/10.1016/j.corsci.2006.10.014
3.
3. J. E. Gray and B. Luan, J. Alloy Compd. 336, 88113 (2002).
http://dx.doi.org/10.1016/S0925-8388(01)01899-0
4.
4. B. V. A. Rao, M. Y. Iqbal, and B. Sreedhar, Corros. Sci. 51, 14411452 (2009).
http://dx.doi.org/10.1016/j.corsci.2009.03.034
5.
5. M. Stratmann, R. Feser, and A. Leng, Electrochim. Acta. 39, 12071214 (1994).
http://dx.doi.org/10.1016/0013-4686(94)E0038-2
6.
6. M. Segarra, L. Miralles, J. Diaz, H. Xuriguera, J. M. Chimenos, F. Espiell, and S. Pinol, Mater. Sci. Forum 426–432, 35113516 (2003).
http://dx.doi.org/10.4028/www.scientific.net/MSF.426-432.3511
7.
7. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438, 197200 (2005).
http://dx.doi.org/10.1038/nature04233
8.
8. Y. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Appl. Phys. Lett. 93, 022509 (2008).
http://dx.doi.org/10.1063/1.2953972
9.
9. Y. S. Dedkov, M. Fonin, and C. Laubschat, Appl. Phys. Lett. 92, 052506 (2008).
http://dx.doi.org/10.1063/1.2841809
10.
10. B. Borca, F. Calleja, J. J. Hinarejos, A. L. V. Parga, and R. Miranda, J. Phys.: Condens. Matter. 21, 134002 (2009).
http://dx.doi.org/10.1088/0953-8984/21/13/134002
11.
11. S. Chen, L. Brown, M. Levendorf, W. Cai, S. Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, ACS Nano. 5, 13211327 (2011).
http://dx.doi.org/10.1021/nn103028d
12.
12. S. Gadipelli, I. Calizo, J. Ford, G. Cheng, A. R. H. Walker, and T. Yildirim, J. Mater. Chem. 21, 1605716065 (2011).
http://dx.doi.org/10.1039/C1JM12938D
13.
13. J. Cho, L. Gao, J. Tian, H. Cao, W. Wu, Q. Yu, E. N. Yitamben, B. Fisher, J. R. Guest, Y. P. Chen, and N. P. Guisinger, ACS Nano. 5, 36073613 (2011).
http://dx.doi.org/10.1021/nn103338g
14.
14. N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N. Martensson, and A. B. Preobrajenski, J. Phys. Chem. C. 115, 95689577 (2011).
http://dx.doi.org/10.1021/jp111962k
15.
15. M. Topsakal, H. Sahin, and S. Ciraci, Phys. Rev. B. 85, 155445 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155445
16.
16. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568571 (2011).
http://dx.doi.org/10.1126/science.1194975
17.
17. M. Chhowalla and G. A. J. Amaratunga, Nature 407, 164167 (2000).
http://dx.doi.org/10.1038/35025020
18.
18. C. Donnet, J. M. Martin, Th. Le Mogne, and M. Belin, Tribol. Int. 29, 123128 (1996).
http://dx.doi.org/10.1016/0301-679X(95)00094-K
19.
19. H. H. Chien, K. J. Ma, S. V. P. Vattikuti, C. H. Kuo, C. B. Huo, and C. L. Chao, Thin Solid Films. 518, 75327534 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.05.040
20.
20. K. S. Novoselov, D. Jiang, T. Booth, V. V. Khotkevich, S. M. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 1045110453 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
21.
21. K. K. Kam and B. A. Parkinson, J. Phys. Chem. 86, 463467 (1982).
http://dx.doi.org/10.1021/j100393a010
22.
22. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
23.
23. C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 89838999 (2012).
http://dx.doi.org/10.1021/jp212558p
24.
24. J. P. Wilcoxon, T. R. Thurston, and J. E. Martin, Nanostruct. Mater. 12, 993997 (1999).
http://dx.doi.org/10.1016/S0965-9773(99)00285-8
25.
25. B. Abrams and J. Wilcoxon, Crit. Rev. Solid State Mater. Sci. 30, 153182 (2005).
http://dx.doi.org/10.1080/10408430500200981
26.
26. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147150 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
27.
27. W. Park, J. Park, J. Jang, H. Lee, H. Jeong, K. Cho, S. Hong, and T. Lee, Nanotechnology 24, 095202 (2013).
http://dx.doi.org/10.1088/0957-4484/24/9/095202
28.
28. G. Kline, K. K. Kam, R. Ziegler, and B. A. Parkinson, Sol. Energy Mater. 6, 337350 (1982).
http://dx.doi.org/10.1016/0165-1633(82)90039-9
29.
29. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernède, J. Tedd, J. Pouzet, and J. Salardenne, Sol. Energy Mater Sol. Cells 46, 115121 (1997).
http://dx.doi.org/10.1016/S0927-0248(96)00096-7
30.
30. J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, Appl. Phys. Lett. 96, 082504 (2010).
http://dx.doi.org/10.1063/1.3318254
31.
31. A. Azcatl, S. McDonnell, K. C. Santosh, X. Peng, H. Dong, X. Qin, R. Addou et al., Appl. Phys. Lett. 104, 111601 (2014).
http://dx.doi.org/10.1063/1.4869149
32.
32. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
33.
33. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864B871 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
34.
34. G. Kresse and J. Hafner, Phys. Rev. B. 47, 558561 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
35.
35. G. Kresse and J. Furthmuller, Phys. Rev. B. 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
36.
36. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
37.
37. P. E. Blochl, Phys. Rev. B. 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
38.
38. H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
39.
39. G. H. Diercksen and S. Wilson, Methods in Computational Molecular Physics (Springer, 1983).
40.
40. G. Mills, H. Jonsson, and G. K. Schenter, Surf. Sci. 324, 305337 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00731-4
41.
41. G. Henkelman, A. Arnaldsson, and H. Jonsson, Comput. Mater. Sci. 36, 354360 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
42.
42.On the other hand, even energetically not favourable when compared to the ideal MoS2, the resulting structure (Mo16S15O1) can indicate the possibility of formation of stable molybdenum oxide (MoOx) by convenient processes.
43.
43. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, Nano Lett. 13, 26152622 (2013).
http://dx.doi.org/10.1021/nl4007479
44.
44. S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, ACS Nano 8, 28802888 (2014).
http://dx.doi.org/10.1021/nn500044q
45.
45. B. H. Xu, B. Z. Lin, D. Y. Sun, C. Ding, X.-Z. Liu, and Z.-J. Xiao, Mater. Res. Bull. 42, 16331639 (2007).
http://dx.doi.org/10.1016/j.materresbull.2006.11.030
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/8/10.1063/1.4893790
Loading
/content/aip/journal/jap/116/8/10.1063/1.4893790
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/8/10.1063/1.4893790
2014-08-26
2014-09-21

Abstract

First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS monolayer is prevented by a very high diffusion barrier indicating that MoS can serve as a protective layer for oxidation. The analysis is extended to WS and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS and WS monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/8/1.4893790.html;jsessionid=2juwx663rp3f7.x-aip-live-02?itemId=/content/aip/journal/jap/116/8/10.1063/1.4893790&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monolayers of MoS2 as an oxidation protective nanocoating material
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/8/10.1063/1.4893790
10.1063/1.4893790
SEARCH_EXPAND_ITEM