Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/116/9/10.1063/1.4894824
1.
1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
2.
2. R. W. Ziolkowski and A. Erentok, IEEE Trans. Antennas Propag. 54, 2113 (2006).
http://dx.doi.org/10.1109/TAP.2006.877179
3.
3. I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, New J. Phys. 7, 223 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/223
4.
4. A. Noor and Z. Hu, IET Microw. Antennas Propag. 4, 667–673 (2010).
http://dx.doi.org/10.1049/iet-map.2009.0047
5.
5. A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafne, IEEE Trans. Antennas Propag. 58, 40514058 (2010).
http://dx.doi.org/10.1109/TAP.2010.2078482
6.
6. I. Puscasu and W. L. Schaich, Appl. Phys. Lett. 92, 233102 (2008).
http://dx.doi.org/10.1063/1.2938716
7.
7. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, Opt. Express 17, 13526 (2009).
http://dx.doi.org/10.1364/OE.17.013526
8.
8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.207403
9.
9. J. J. Lai, H. F. Liang, Z. L. Peng, X. Yi, and X. F. Zhai, J. Phys.: Conf. Ser. 276, 012129 (2011).
10.
10. B. Liu and S. Shen, Phys. Rev. B 87, 115403 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115403
11.
11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
http://dx.doi.org/10.1063/1.3442904
12.
12. V. E. Ferry, A. Polman, and H. A. Atwater, ACS Nano 5, 10055 (2011).
http://dx.doi.org/10.1021/nn203906t
13.
13. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
http://dx.doi.org/10.1038/ncomms1528
14.
14. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).
http://dx.doi.org/10.1021/nl203763k
15.
15. B. R. Bian, S. B. Liu, S. Y. Wang, X. K. Kong, Y. N. Guo, and X. Zhao, Opt. Express 21, A231 (2013).
http://dx.doi.org/10.1364/OE.21.00A231
16.
16. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 71817188 (2008).
http://dx.doi.org/10.1364/OE.16.007181
17.
17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.241103
18.
18. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, Appl. Phys. A: Mater. Sci. Process. 102, 99–103 (2011).
http://dx.doi.org/10.1007/s00339-010-6022-4
19.
19. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 23422348 (2010).
http://dx.doi.org/10.1021/nl9041033
20.
20. C. H. Lin, R. L. Chern, and H. Y. Lin, Opt. Express 19, 415424 (2011).
http://dx.doi.org/10.1364/OE.19.000415
21.
21. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, Phys. Rev. B 79, 045131 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.045131
22.
22. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, J. Appl. Phys. 108, 083113 (2010).
http://dx.doi.org/10.1063/1.3493736
23.
23. A. Mejdoubi and C. Brosseau, Phys. Rev. B 74, 165424 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165424
24.
24. A. Mejdoubi and C. Brosseau, J. Appl. Phys. 101, 084109 (2007).
http://dx.doi.org/10.1063/1.2718279
25.
25. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).
http://dx.doi.org/10.1063/1.3688435
26.
26. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, Appl. Phys. Lett. 95, 241111 (2009).
http://dx.doi.org/10.1063/1.3276072
27.
27. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, Appl. Phys. Lett. 99, 264101 (2011).
http://dx.doi.org/10.1063/1.3672100
28.
28. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, and O. Gordo, Appl. Phys. A 108, 329 (2012).
http://dx.doi.org/10.1007/s00339-012-6989-0
29.
29. B. R. Bian, S. B. Liu, S. Y. Wang, X. K. Kong, H. F. Zhang, B. Ma, and H. Yang, J. Appl. Phys. 114, 194511 (2013).
http://dx.doi.org/10.1063/1.4832785
30.
30. Z. W. Mao, S. B. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Y. Xu, J. Appl. Phys. 115, 204505 (2014).
http://dx.doi.org/10.1063/1.4878697
31.
31. Y. Q. Ye, Y. Jin, and S. He, J. Opt. Soc. Am. B 27, 498504 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000498
32.
32. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 34763478 (2011).
http://dx.doi.org/10.1364/OL.36.003476
33.
33. C. Wu and G. Shvets, Opt. Lett. 37, 308310 (2012).
http://dx.doi.org/10.1364/OL.37.000308
34.
34. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, Nano Lett. 12, 14431447 (2012).
http://dx.doi.org/10.1021/nl204118h
35.
35. D. H. Kim, D. S. Kim, S. Hwang, and J. H. Jang, Opt. Express 20, 1681516822 (2012).
http://dx.doi.org/10.1364/OE.20.016815
36.
36. H. T. Chen, J. Zhou, J. F. O'Hara, F. Chen, A. K. Azad, and A. J. Taylor, Phys. Rev. Lett. 105, 073901073904 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073901
37.
37. J. Sun, L. Liu, G. Dong, and J. Zhou, Opt. Express 19, 2115521162 (2011).
http://dx.doi.org/10.1364/OE.19.021155
http://aip.metastore.ingenta.com/content/aip/journal/jap/116/9/10.1063/1.4894824
Loading
/content/aip/journal/jap/116/9/10.1063/1.4894824
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/116/9/10.1063/1.4894824
2014-09-05
2016-09-27

Abstract

In this paper, the design, simulation, fabrication, and measurement of an ultrathin and broadband microwave metamaterial absorber (MMA) based on a double-layer structure are presented. Compared with the prior work, our structure is simple and polarization insensitive. The broadband MMA presents good absorption above between and , with a full width at half maximum (FWHM) absorption bandwidth of and a relative FWHM absorption bandwidth of . Moreover, the structure has a thickness of (only at the lowest frequencies). The experimental results show excellent absorption rates which are in good correspondence with the simulated results. The broadband absorber is promising candidates as absorbing elements in scientific and technical applications because of its broadband absorption and polarization insensitive.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/116/9/1.4894824.html;jsessionid=9zTpj74UqOheaRdEVHHD-aZF.x-aip-live-02?itemId=/content/aip/journal/jap/116/9/10.1063/1.4894824&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/116/9/10.1063/1.4894824&pageURL=http://scitation.aip.org/content/aip/journal/jap/116/9/10.1063/1.4894824'
Right1,Right2,Right3,