Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/10/10.1063/1.4914904
1.
1. M. L. G. Joy, G. C. Scott, and R. M. Henkelman, “ In vivo detection of applied electric currents by magnetic resonance imaging,” Magn. Reson. Imag. 7, 8994 (1989).
http://dx.doi.org/10.1016/0730-725X(89)90328-7
2.
2. G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, “ Measurement of nonuniform current density by magnetic resonance,” IEEE Trans. Med. Imaging 10, 362374 (1991).
http://dx.doi.org/10.1109/42.97586
3.
3. M. L. G. Joy, “ MR current density and conductivity imaging: the state of the art,” in Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA (2004), p. 53155319.
4.
4. O. I. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, “ Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm,” IEEE Trans. Biomed. Eng. 49, 160167 (2002).
http://dx.doi.org/10.1109/10.979355
5.
5. H. S. Nam, B. I. Lee, J. Choi, C. Park, and O. I. Kwon, “ Conductivity imaging with low level current injection using transversal J-substitution algorithm in MREIT,” Phys. Med. Biol. 52, 67176730 (2007).
http://dx.doi.org/10.1088/0031-9155/52/22/011
6.
6. O. Birgul, B. M. Eyuboglu, and Y. Z. Ider, “ Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns,” Phys. Med. Biol. 48, 653671 (2003).
http://dx.doi.org/10.1088/0031-9155/48/5/307
7.
7. O. I. Kwon, J. Y. Lee, and J. R. Yoon, “ Equipotential line method for magnetic resonance electrical impedance tomography (MREIT),” Inverse Problems 18, 10891100 (2002).
http://dx.doi.org/10.1088/0266-5611/18/4/310
8.
8. Y. Z. Ider, S. Onart, and W. R. B. Lionheart, “ Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography(MR-EIT),” Physiol. Meas. 24, 591604 (2003).
http://dx.doi.org/10.1088/0967-3334/24/2/368
9.
9. Y. J. Lee, “ A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions,” Inverse Problems 20, 847858 (2004).
http://dx.doi.org/10.1088/0266-5611/20/3/012
10.
10. Y. Z. Ider and O. Birgul, “ Use of the magnetic field generated by the internal distribution of injected currents for Electrical Impedance Tomography (MR-EIT),” Elektrik 6, 215225 (1998).
11.
11. B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. I. Kwon, J. K. Seo, J. Y. Lee, and W. S. Baek, “ Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes,” Phys. Med. Biol. 48, 19711986 (2003).
http://dx.doi.org/10.1088/0031-9155/48/13/309
12.
12. S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, M. H. Cho, O. I. Kwon, and J. K. Seo, “ Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography,” Phys. Med. Biol. 48, 31013116 (2003).
http://dx.doi.org/10.1088/0031-9155/48/19/001
13.
13. J. K. Seo, J. R. Yoon, E. J. Woo, and O. I. Kwon, “ Reconstruction of conductivity and current density images using only one component of magnetic field measurements,” IEEE Trans. Biomed. Eng. 50, 11211124 (2003).
http://dx.doi.org/10.1109/TBME.2003.816080
14.
14. Y. Z. Ider and S. Onart, “ Algebraic reconstruction for 3D MREIT using one component of magnetic flux density,” Physiol. Meas. 25, 281294 (2004).
http://dx.doi.org/10.1088/0967-3334/25/1/032
15.
15. L. Muftuler, M. Hamamura, O. Birgul, and O. Nalcioglu, “ Resolution and contrast in magnetic resonance electrical impedance tomography (MREIT) and its application to cancer imaging,” Tech. Cancer Res. Treat. 3, 599609 (2004).
http://dx.doi.org/10.1177/153303460400300610
16.
16. B. I. Lee, S. H. Lee, T. S. Kim, and O. I. Kwon, “ Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography,” IEEE Trans. Biomed. Eng. 52, 19121920 (2005).
http://dx.doi.org/10.1109/TBME.2005.856258
17.
17. O. Birgul, M. Hamamura, L. Muftuler, and O. Nalcioglu, “ Contrast and spatial resolution in MREIT using low amplitude current,” Phys. Med. Biol. 51, 50355049 (2006).
http://dx.doi.org/10.1088/0031-9155/51/19/020
18.
18. N. Gao, S. A. Zhu, and B. He, “ A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity,” Phys. Med. Biol. 51, 30673083 (2006).
http://dx.doi.org/10.1088/0031-9155/51/12/005
19.
19. H. J. Kim, T. I. Oh, Y. T. Kim, B. I. Lee, E. J. Woo, J. K. Seo, S. Y. Lee, O. I. Kwon, C. Park, B. T. Kang, and H. M. Park, “ In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system,” Physiol. Meas. 29, 11451155 (2008).
http://dx.doi.org/10.1088/0967-3334/29/10/001
20.
20. E. J. Woo and J. K. Seo, “ Measurement of nonuniform current density by magnetic resonance,” Physiol. Meas. 29, R1R26 (2008).
http://dx.doi.org/10.1088/0967-3334/29/10/R01
21.
21. Y. J. Kim, O. Kwon, J. K. Seo, and E. J. Woo, “ Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography,” Inverse Problems 19, 12131225 (2003).
http://dx.doi.org/10.1088/0266-5611/19/5/312
22.
22. H. S. Nam and O. I. Kwon, “ Identification of current density distribution in electrically conducting object with anisotropic conductivity distribution,” Phys. Med. Biol. 50, 31833196 (2005).
23.
23. J. K. Seo, H. C. Pyo, C. Park, O. I. Kwon, and E. J. Woo, “ Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study,” Phys. Med. Biol. 49, 43714382 (2004).
http://dx.doi.org/10.1088/0031-9155/49/18/012
24.
24. E. Degimenci and B. M. Eyuboglu, “ Anisotropic conductivity imaging with MREIT using equipotential projection algorithm,” Phys. Med. Biol. 52, 72297242 (2007).
http://dx.doi.org/10.1088/0031-9155/52/24/003
25.
25. H. S. Nam and O. I. Kwon, “ Axial anisotropic conductivity imaging based on projected current density in MREIT,” IEEE Trans. Med. Imaging 29, 781789 (2010).
http://dx.doi.org/10.1109/TMI.2009.2036440
26.
26. E. Degimenci and B. M. Eyuboglu, “ Image reconstruction in magnetic resonance conductivity tensor imaging (MRCTI),” IEEE Trans. Med. Imaging 31, 525532 (2012).
http://dx.doi.org/10.1109/TMI.2011.2171192
27.
27. C. Park, B. I. Lee, and O. I. Kwon, “ Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI,” Phys. Med. Biol. 52, 30013013 (2007).
http://dx.doi.org/10.1088/0031-9155/52/11/005
28.
28. H. J. Kim, Y. T. Kim, A. S. Minhas, W. C. Jeong, E. J. Woo, J. K. Seo, and O. J. Kwon, “ In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment,” IEEE Trans. Med. Imaging 28, 16811687 (2009).
http://dx.doi.org/10.1109/TMI.2009.2018112
29.
29. T. H. Lee, H. S. Nam, M. G. Lee, Y. J. Kim, E. J. Woo, and O. I. Kwon, “ Reconstruction of conductivity using the dual-loop method with one injection current in MREIT,” Phys. Med. Biol. 55, 75237539 (2010).
http://dx.doi.org/10.1088/0031-9155/55/24/009
30.
30. C. Park, B. I. Lee, O. I. Kwon, and E. J. Woo, “ Measurement of induced magnetic flux density using injection current nonlinear encoding(ICNE) in MREIT,” Physiol. Meas. 28, 117127 (2007).
http://dx.doi.org/10.1088/0967-3334/28/2/001
31.
31. G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, “ Sensitivity of magnetic-resonance current-density imaging,” J. Magn. Reson. 97, 235254 (1992).
http://dx.doi.org/10.1016/0022-2364(92)90310-4
32.
32. R. Sadleir, S. Grant, S. U. Zhang, B. I. Lee, H. C. Pyo, S. H. Oh, C. Park, E. J. Woo, S. Y. Lee, O. I. Kwon, and J. K. Seo, “ Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 tesla field strength,” Physiol. Meas. 26, 875884 (2005).
http://dx.doi.org/10.1088/0967-3334/26/5/023
33.
33. L. Rudin, S. Osher, and E. Fatemi, “ Nonlinear total variation based noise removal algorithms,” Physica D 60, 259268 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90242-F
34.
34. L. Rudin and S. Osher, “ Total variation based image restoration with free local constraints,” Proc. 1st IEEE ICIP 1, 3135 (1994).
http://dx.doi.org/10.1109/ICIP.1994.413269
35.
35. H. S. Nam and O. I. Kwon, “ Optimization of multiply acquired magnetic flux density Bz using ICNE Multiecho train in MREIT,” Phys. Med. Biol. 55, 27432759 (2010).
http://dx.doi.org/10.1088/0031-9155/55/9/021
36.
36. H. S. Nam, C. Park, and O. I. Kwon, “ Non-iterative conductivity reconstruction algorithm using projected current density in MREIT,” Phys. Med. Biol. 53, 69476961 (2008).
http://dx.doi.org/10.1088/0031-9155/53/23/019
37.
37. T. I. Oh, Y. T. Kim, A. Minhas, J. K. Seo, O. I. Kwon, and E. J. Woo, “ Ion mobility imaging and contrast mechanism of apparent conductivity in MREIT,” Phys. Med. Biol. 56, 22652277 (2011).
http://dx.doi.org/10.1088/0031-9155/56/7/022
38.
38. M. Ozdemir, B. M. Eyuboglu, and O. Ozbek, “ Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization,” Phys. Med. Biol. 49, 47654783 (2004).
http://dx.doi.org/10.1088/0031-9155/49/20/008
39.
39. D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, “ Conductivity tensor mapping of the human brain using diffusion tensor,” Proc. Natl. Acad. Sci. USA 98, 1169711701 (2001).
http://dx.doi.org/10.1073/pnas.171473898
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/10/10.1063/1.4914904
Loading
/content/aip/journal/jap/117/10/10.1063/1.4914904
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/10/10.1063/1.4914904
2015-03-13
2016-09-24

Abstract

Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as B. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple B data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured B data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/10/1.4914904.html;jsessionid=vYxWFjUFL-NEe0JENp8cQGcB.x-aip-live-06?itemId=/content/aip/journal/jap/117/10/10.1063/1.4914904&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/10/10.1063/1.4914904&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/10/10.1063/1.4914904'
Right1,Right2,Right3,