Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/11/10.1063/1.4915628
1.
1. H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, Thin Solid Films 163, 415 (1988).
http://dx.doi.org/10.1016/0040-6090(88)90458-0
2.
2. S. Pendlebury, P. Parbrook, D. Mowbray, D. Wood, and K. Lee, J. Cryst. Growth 307, 363 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.07.018
3.
3. S. Kret, F. Ivaldi, K. Sobczak, R. Czernecki, and M. Leszczyński, Phys. Status Solidi A 207, 1101 (2010).
http://dx.doi.org/10.1002/pssa.200983116
4.
4. E. Thrush, M. Kappers, P. Dawson, D. Graham, J. Barnard, M. Vickers, L. Considine, J. Mullins, and C. Humphreys, Phys. Status Solidi A 192, 354 (2002).
http://dx.doi.org/10.1002/1521-396X(200208)192:2<354::AID-PSSA354>3.0.CO;2-I
5.
5. D. M. Graham, P. Dawson, M. J. Godfrey, M. J. Kappers, P. M. F. J. Costa, M. E. Vickers, R. Datta, C. J. Humphreys, and E. J. Thrush, Phys. Status Solidi C 3, 1970 (2006).
http://dx.doi.org/10.1002/pssc.200565252
6.
6. J.-W. Ju, H.-S. Kim, L.-W. Jang, J. H. Baek, D.-C. Shin, and I.-H. Lee, Nanotechnology 18, 295402 (2007).
http://dx.doi.org/10.1088/0957-4484/18/29/295402
7.
7. P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, Phys. Status Solidi A 203, 1729 (2006).
http://dx.doi.org/10.1002/pssa.200565219
8.
8. T. Zhu, H. A. El-Ella, B. Reid, M. J. Holmes, R. A. Taylor, M. J. Kappers, and R. A. Oliver, J. Cryst. Growth 338, 262 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.11.001
9.
9. S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125039
10.
10. R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
http://dx.doi.org/10.1063/1.4824193
11.
11. J. Christen, M. Grundmann, and D. Bimberg, J. Vac. Sci. Technol., B 9, 2358 (1991).
http://dx.doi.org/10.1116/1.585704
12.
12. M. Avella, E. de la Puente, J. Jimenez, A. Castaldini, A. Cavallini, and L. Polenta, J. Cryst. Growth 210, 220 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00683-1
13.
13. J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, Appl. Phys. Lett. 98, 141908 (2011).
http://dx.doi.org/10.1063/1.3575573
14.
14. P. R. Edwards, D. Sleith, A. W. Wark, and R. W. Martin, J. Phys. Chem. C 115, 14031 (2011).
http://dx.doi.org/10.1021/jp202083p
15.
15. K. J. Lethy, P. R. Edwards, C. Liu, W. N. Wang, and R. W. Martin, J. Appl. Phys. 112, 023507 (2012).
http://dx.doi.org/10.1063/1.4737418
16.
16. M. J. Wallace, P. R. Edwards, M. J. Kappers, M. A. Hopkins, F. Oehler, S. Sivaraya, D. W. E. Allsopp, R. A. Oliver, C. J. Humphreys, and R. W. Martin, J. Appl. Phys. 116, 033105 (2014).
http://dx.doi.org/10.1063/1.4890497
17.
17. E. Yakimov, S. Borisov, and S. Zaitsev, Semiconductors 41, 411 (2007).
http://dx.doi.org/10.1134/S1063782607040094
18.
18. E. Yakimov, P. Vergeles, A. Govorkov, A. Polyakov, N. Smirnov, I.-H. Lee, C. R. Lee, and S. Pearton, Superlattices Microstruct. 45, 308 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.09.008
19.
19. E. Yakimov, J. Surf. Invest. 6, 887 (2012).
http://dx.doi.org/10.1134/S1027451012110158
20.
20. U. Jahn, S. Dhar, M. Ramsteiner, and K. Fujiwara, Phys. Rev. B 69, 115323 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115323
21.
21. H. Masui, J. Sonoda, N. Pfaff, I. Koslow, S. Nakamura, and S. P. DenBaars, J. Phys. D: Appl. Phys. 41, 165105 (2008).
http://dx.doi.org/10.1088/0022-3727/41/16/165105
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/11/10.1063/1.4915628
Loading
/content/aip/journal/jap/117/11/10.1063/1.4915628
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/11/10.1063/1.4915628
2015-03-20
2016-09-30

Abstract

In this paper, we present a combined cathodoluminescence (CL) and electron beam induced current (EBIC) study of the optical and electrical properties of InGaN light emitting diodes grown using different active region growth methods. In one device, both the quantum wells and quantum barriers were deposited at their optimum temperatures (2 T), whereas in the other device, each barrier was grown in a two step process with the first few nanometers at a lower temperature (Q2T). It was found that in the Q2T sample, small micron scale domains of lower emission intensity correlate strongly to a lower EBIC signal, whereas in the 2 T sample which has a more uniform emission pattern and an anti-correlation exists between CL emission intensity and EBIC signal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/11/1.4915628.html;jsessionid=p0RsLbhzmX84JkhdEUqyZ7OA.x-aip-live-06?itemId=/content/aip/journal/jap/117/11/10.1063/1.4915628&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/11/10.1063/1.4915628&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/11/10.1063/1.4915628'
Right1,Right2,Right3,