Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, Thin Solid Films 163, 415 (1988).
2. S. Pendlebury, P. Parbrook, D. Mowbray, D. Wood, and K. Lee, J. Cryst. Growth 307, 363 (2007).
3. S. Kret, F. Ivaldi, K. Sobczak, R. Czernecki, and M. Leszczyński, Phys. Status Solidi A 207, 1101 (2010).
4. E. Thrush, M. Kappers, P. Dawson, D. Graham, J. Barnard, M. Vickers, L. Considine, J. Mullins, and C. Humphreys, Phys. Status Solidi A 192, 354 (2002).<354::AID-PSSA354>3.0.CO;2-I
5. D. M. Graham, P. Dawson, M. J. Godfrey, M. J. Kappers, P. M. F. J. Costa, M. E. Vickers, R. Datta, C. J. Humphreys, and E. J. Thrush, Phys. Status Solidi C 3, 1970 (2006).
6. J.-W. Ju, H.-S. Kim, L.-W. Jang, J. H. Baek, D.-C. Shin, and I.-H. Lee, Nanotechnology 18, 295402 (2007).
7. P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, Phys. Status Solidi A 203, 1729 (2006).
8. T. Zhu, H. A. El-Ella, B. Reid, M. J. Holmes, R. A. Taylor, M. J. Kappers, and R. A. Oliver, J. Cryst. Growth 338, 262 (2012).
9. S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
10. R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
11. J. Christen, M. Grundmann, and D. Bimberg, J. Vac. Sci. Technol., B 9, 2358 (1991).
12. M. Avella, E. de la Puente, J. Jimenez, A. Castaldini, A. Cavallini, and L. Polenta, J. Cryst. Growth 210, 220 (2000).
13. J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, Appl. Phys. Lett. 98, 141908 (2011).
14. P. R. Edwards, D. Sleith, A. W. Wark, and R. W. Martin, J. Phys. Chem. C 115, 14031 (2011).
15. K. J. Lethy, P. R. Edwards, C. Liu, W. N. Wang, and R. W. Martin, J. Appl. Phys. 112, 023507 (2012).
16. M. J. Wallace, P. R. Edwards, M. J. Kappers, M. A. Hopkins, F. Oehler, S. Sivaraya, D. W. E. Allsopp, R. A. Oliver, C. J. Humphreys, and R. W. Martin, J. Appl. Phys. 116, 033105 (2014).
17. E. Yakimov, S. Borisov, and S. Zaitsev, Semiconductors 41, 411 (2007).
18. E. Yakimov, P. Vergeles, A. Govorkov, A. Polyakov, N. Smirnov, I.-H. Lee, C. R. Lee, and S. Pearton, Superlattices Microstruct. 45, 308 (2009).
19. E. Yakimov, J. Surf. Invest. 6, 887 (2012).
20. U. Jahn, S. Dhar, M. Ramsteiner, and K. Fujiwara, Phys. Rev. B 69, 115323 (2004).
21. H. Masui, J. Sonoda, N. Pfaff, I. Koslow, S. Nakamura, and S. P. DenBaars, J. Phys. D: Appl. Phys. 41, 165105 (2008).

Data & Media loading...


Article metrics loading...



In this paper, we present a combined cathodoluminescence (CL) and electron beam induced current (EBIC) study of the optical and electrical properties of InGaN light emitting diodes grown using different active region growth methods. In one device, both the quantum wells and quantum barriers were deposited at their optimum temperatures (2 T), whereas in the other device, each barrier was grown in a two step process with the first few nanometers at a lower temperature (Q2T). It was found that in the Q2T sample, small micron scale domains of lower emission intensity correlate strongly to a lower EBIC signal, whereas in the 2 T sample which has a more uniform emission pattern and an anti-correlation exists between CL emission intensity and EBIC signal.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd