Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/13/10.1063/1.4916715
1.
1. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).
http://dx.doi.org/10.1063/1.3634052
2.
2. J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kuücher, T. Mikolajick, and L. Frey, J. Appl. Phys. 110, 114113 (2011).
http://dx.doi.org/10.1063/1.3667205
3.
3. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).
http://dx.doi.org/10.1002/adfm.201103119
4.
4. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).
http://dx.doi.org/10.1021/nl302049k
5.
5. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, ECS J. Solid State Sci. Technol. 1, N123 (2012).
http://dx.doi.org/10.1149/2.002301jss
6.
6. T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. Van Elshocht, and T. Mikolajick, in 2013 Proceedings of European Solid-State Device Research Conference ( IEEE, 2013), pp. 260263.
7.
7. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, Appl. Phys. Lett. 102, 242905 (2013).
http://dx.doi.org/10.1063/1.4811483
8.
8. T. Shimizu, T. Yokouchi, T. Shiraishi, T. Oikawa, P. S. S. R. Krishnan, and H. Funakubo, Jpn. J. Appl. Phys., Part 53, 09PA04 (2014).
http://dx.doi.org/10.7567/JJAP.53.09PA04
9.
9. C. Cheng and A. Chin, IEEE Electron Device Lett. 35, 138 (2014).
http://dx.doi.org/10.1109/LED.2013.2290117
10.
10. S. Mueller, J. Müller, R. Hoffmann, E. Yurchuk, T. Schlösser, R. Boschke, J. Paul, M. Goldbach, T. Herrmann, A. Zaka, U. Schröder, and T. Mikolajick, IEEE Trans. Electron Devices 60, 4199 (2013).
http://dx.doi.org/10.1109/TED.2013.2283465
11.
11. E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. Schröeder, R. Boschke, R. van Bentum, and T. Mikolajick, IEEE Trans. Electron Devices 61, 3699 (2014).
http://dx.doi.org/10.1109/TED.2014.2354833
12.
12. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, and C. S. Hwang, Adv. Energy Mater. 4, 1400610 (2014).
http://dx.doi.org/10.1002/aenm.201400610
13.
13. S. Mueller, J. Müller, U. Schroeder, and T. Mikolajick, IEEE Trans. Device Mater. Reliab. 13, 93 (2013).
http://dx.doi.org/10.1109/TDMR.2012.2216269
14.
14. P. D. Lomenzo, P. Zhao, Q. Takmeel, S. Moghaddam, T. Nishida, M. Nelson, C. M. Fancher, E. D. Grimley, X. Sang, J. M. LeBeau, and J. L. Jones, J. Vac. Sci. Technol., B 32, 03D123 (2014).
http://dx.doi.org/10.1116/1.4873323
15.
15. E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. P. Graham, T. Melde, U. Schröder, and T. Mikolajick, Thin Solid Films 533, 88 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.11.125
16.
16. P. D. Lomenzo, Q. Takmeel, C. Zhou, Y. Liu, C. M. Fancher, J. L. Jones, S. Moghaddam, and T. Nishida, Appl. Phys. Lett. 105, 072906 (2014).
http://dx.doi.org/10.1063/1.4893738
17.
17. D. Martin, J. Müller, T. Schenk, T. M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schröder, S. V. Kalinin, and T. Mikolajick, Adv. Mater. 26, 8198 (2014).
http://dx.doi.org/10.1002/adma.201403115
18.
18. D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, Appl. Phys. Lett. 103, 192904 (2013).
http://dx.doi.org/10.1063/1.4829064
19.
19. P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Müller, in 2014 IEEE 6th International Memory Workshop ( IEEE, 2014), pp. 14.
20.
20. T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick, Appl. Phys. Rev. 1, 041103 (2014).
http://dx.doi.org/10.1063/1.4902396
21.
21. C. J. Brennan, Integr. Ferroelectr. 2, 73 (1992).
http://dx.doi.org/10.1080/10584589208215733
22.
22. C. J. Brennan, MRS Proc. 243, 141 (1991).
http://dx.doi.org/10.1557/PROC-243-141
23.
23. R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys. 44, 3379 (1973).
http://dx.doi.org/10.1063/1.1662770
24.
24. M. M. Hussain, N. Moumen, J. Barnett, J. Saulters, D. Baker, and Z. Zhang, Electrochem. Solid-State Lett. 8, G333 (2005).
http://dx.doi.org/10.1149/1.2081827
25.
25. S. Mueller, S. R. Summerfelt, J. Müller, U. Schroeder, and T. Mikolajick, IEEE Electron Device Lett. 33, 1300 (2012).
http://dx.doi.org/10.1109/LED.2012.2204856
26.
26. L. A. Giannuzzi and F. A. Stevie, Micron 30, 197 (1999).
http://dx.doi.org/10.1016/S0968-4328(99)00005-0
27.
27. M. Sugiyama and G. Sigesato, J. Electron Microsc. (Tokyo) 53, 527 (2004).
http://dx.doi.org/10.1093/jmicro/dfh071
28.
28. L. A. Giannuzzi, J. L. Drown, S. R. Brown, R. B. Irwin, and F. A. Stevie, Microsc. Res. Tech. 41, 285 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0029(19980515)41:4<285::AID-JEMT1>3.0.CO;2-Q
29.
29. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32, 400 (2007).
http://dx.doi.org/10.1557/mrs2007.63
30.
30. S. Bals, W. Tirry, R. Geurts, Z. Yang, and D. Schryvers, Microsc. Microanal. 13, 80 (2007).
http://dx.doi.org/10.1017/S1431927607070018
31.
31. N. I. Kato, J. Electron Microsc. (Tokyo) 53, 451 (2004).
http://dx.doi.org/10.1093/jmicro/dfh080
32.
32. D. Zhou, J. Müller, J. Xu, S. Knebel, D. Bräuhaus, and U. Schröder, Appl. Phys. Lett. 100, 082905 (2012).
http://dx.doi.org/10.1063/1.3688915
33.
33. L. Pintilie, I. Boerasu, M. J. M. Gomes, T. Zhao, R. Ramesh, and M. Alexe, J. Appl. Phys. 98, 124104 (2005).
http://dx.doi.org/10.1063/1.2148623
34.
34. M. Kohli, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 3217 (1998).
http://dx.doi.org/10.1063/1.121554
35.
35. T. D. Huan, V. Sharma, G. A. Rossetti, and R. Ramprasad, Phys. Rev. B 90, 064111 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.064111
36.
36. N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, and T. Arikado, Appl. Phys. Lett. 86, 143507 (2005).
http://dx.doi.org/10.1063/1.1899232
37.
37. V. Cuny and N. Richard, J. Appl. Phys. 104, 033709 (2008).
http://dx.doi.org/10.1063/1.2965193
38.
38. M. H. Park, H. J. Kim, Y. J. Kim, W. Jeon, T. Moon, and C. S. Hwang, Phys. Status Solidi RRL 8, 532 (2014).
http://dx.doi.org/10.1002/pssr.201409017
39.
39. T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, ACS Appl. Mater. Interfaces 6, 19744 (2014).
http://dx.doi.org/10.1021/am504837r
40.
40. S. Bernacki, L. Jack, Y. Kisler, S. Collins, S. D. Bernstein, R. Hallock, B. Armstrong, J. Shaw, J. Evans, B. Tuttle, B. Hammetter, S. Rogers, B. Nasby, J. Henderson, J. Benedetto, R. Moore, C. R. Pugh, and A. Fennelly, Integr. Ferroelectr. 3, 97 (1993).
http://dx.doi.org/10.1080/10584589308216704
41.
41. A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Phys. Rev. B 66, 214109 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214109
42.
42. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, in 2011 International Electron Devices Meeting ( IEEE, 2011), pp. 24.5.124.5.4.
43.
43. B. Jaffe, Proc. IRE 49, 1264 (1961).
http://dx.doi.org/10.1109/JRPROC.1961.287917
44.
44. X. Hao, J. Zhai, L. B. Kong, and Z. Xu, Prog. Mater. Sci. 63, 1 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2014.01.002
45.
45. S. S. N. Bharadwaja and S. B. Krupanidhi, J. Appl. Phys. 89, 4541 (2001).
http://dx.doi.org/10.1063/1.1331659
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/13/10.1063/1.4916715
Loading
/content/aip/journal/jap/117/13/10.1063/1.4916715
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/13/10.1063/1.4916715
2015-04-06
2016-12-07

Abstract

Ferroelectric HfO-based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-O bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/13/1.4916715.html;jsessionid=LxX9_Sp6McQLkd8RyyDnQYRX.x-aip-live-06?itemId=/content/aip/journal/jap/117/13/10.1063/1.4916715&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/13/10.1063/1.4916715&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/13/10.1063/1.4916715'
Right1,Right2,Right3,