Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).
2. J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kuücher, T. Mikolajick, and L. Frey, J. Appl. Phys. 110, 114113 (2011).
3. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).
4. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).
5. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, ECS J. Solid State Sci. Technol. 1, N123 (2012).
6. T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. Van Elshocht, and T. Mikolajick, in 2013 Proceedings of European Solid-State Device Research Conference ( IEEE, 2013), pp. 260263.
7. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, Appl. Phys. Lett. 102, 242905 (2013).
8. T. Shimizu, T. Yokouchi, T. Shiraishi, T. Oikawa, P. S. S. R. Krishnan, and H. Funakubo, Jpn. J. Appl. Phys., Part 53, 09PA04 (2014).
9. C. Cheng and A. Chin, IEEE Electron Device Lett. 35, 138 (2014).
10. S. Mueller, J. Müller, R. Hoffmann, E. Yurchuk, T. Schlösser, R. Boschke, J. Paul, M. Goldbach, T. Herrmann, A. Zaka, U. Schröder, and T. Mikolajick, IEEE Trans. Electron Devices 60, 4199 (2013).
11. E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. Schröeder, R. Boschke, R. van Bentum, and T. Mikolajick, IEEE Trans. Electron Devices 61, 3699 (2014).
12. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, and C. S. Hwang, Adv. Energy Mater. 4, 1400610 (2014).
13. S. Mueller, J. Müller, U. Schroeder, and T. Mikolajick, IEEE Trans. Device Mater. Reliab. 13, 93 (2013).
14. P. D. Lomenzo, P. Zhao, Q. Takmeel, S. Moghaddam, T. Nishida, M. Nelson, C. M. Fancher, E. D. Grimley, X. Sang, J. M. LeBeau, and J. L. Jones, J. Vac. Sci. Technol., B 32, 03D123 (2014).
15. E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. P. Graham, T. Melde, U. Schröder, and T. Mikolajick, Thin Solid Films 533, 88 (2013).
16. P. D. Lomenzo, Q. Takmeel, C. Zhou, Y. Liu, C. M. Fancher, J. L. Jones, S. Moghaddam, and T. Nishida, Appl. Phys. Lett. 105, 072906 (2014).
17. D. Martin, J. Müller, T. Schenk, T. M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schröder, S. V. Kalinin, and T. Mikolajick, Adv. Mater. 26, 8198 (2014).
18. D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, Appl. Phys. Lett. 103, 192904 (2013).
19. P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Müller, in 2014 IEEE 6th International Memory Workshop ( IEEE, 2014), pp. 14.
20. T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick, Appl. Phys. Rev. 1, 041103 (2014).
21. C. J. Brennan, Integr. Ferroelectr. 2, 73 (1992).
22. C. J. Brennan, MRS Proc. 243, 141 (1991).
23. R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys. 44, 3379 (1973).
24. M. M. Hussain, N. Moumen, J. Barnett, J. Saulters, D. Baker, and Z. Zhang, Electrochem. Solid-State Lett. 8, G333 (2005).
25. S. Mueller, S. R. Summerfelt, J. Müller, U. Schroeder, and T. Mikolajick, IEEE Electron Device Lett. 33, 1300 (2012).
26. L. A. Giannuzzi and F. A. Stevie, Micron 30, 197 (1999).
27. M. Sugiyama and G. Sigesato, J. Electron Microsc. (Tokyo) 53, 527 (2004).
28. L. A. Giannuzzi, J. L. Drown, S. R. Brown, R. B. Irwin, and F. A. Stevie, Microsc. Res. Tech. 41, 285 (1998).<285::AID-JEMT1>3.0.CO;2-Q
29. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32, 400 (2007).
30. S. Bals, W. Tirry, R. Geurts, Z. Yang, and D. Schryvers, Microsc. Microanal. 13, 80 (2007).
31. N. I. Kato, J. Electron Microsc. (Tokyo) 53, 451 (2004).
32. D. Zhou, J. Müller, J. Xu, S. Knebel, D. Bräuhaus, and U. Schröder, Appl. Phys. Lett. 100, 082905 (2012).
33. L. Pintilie, I. Boerasu, M. J. M. Gomes, T. Zhao, R. Ramesh, and M. Alexe, J. Appl. Phys. 98, 124104 (2005).
34. M. Kohli, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 3217 (1998).
35. T. D. Huan, V. Sharma, G. A. Rossetti, and R. Ramprasad, Phys. Rev. B 90, 064111 (2014).
36. N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, and T. Arikado, Appl. Phys. Lett. 86, 143507 (2005).
37. V. Cuny and N. Richard, J. Appl. Phys. 104, 033709 (2008).
38. M. H. Park, H. J. Kim, Y. J. Kim, W. Jeon, T. Moon, and C. S. Hwang, Phys. Status Solidi RRL 8, 532 (2014).
39. T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, ACS Appl. Mater. Interfaces 6, 19744 (2014).
40. S. Bernacki, L. Jack, Y. Kisler, S. Collins, S. D. Bernstein, R. Hallock, B. Armstrong, J. Shaw, J. Evans, B. Tuttle, B. Hammetter, S. Rogers, B. Nasby, J. Henderson, J. Benedetto, R. Moore, C. R. Pugh, and A. Fennelly, Integr. Ferroelectr. 3, 97 (1993).
41. A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Phys. Rev. B 66, 214109 (2002).
42. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, in 2011 International Electron Devices Meeting ( IEEE, 2011), pp.
43. B. Jaffe, Proc. IRE 49, 1264 (1961).
44. X. Hao, J. Zhai, L. B. Kong, and Z. Xu, Prog. Mater. Sci. 63, 1 (2014).
45. S. S. N. Bharadwaja and S. B. Krupanidhi, J. Appl. Phys. 89, 4541 (2001).

Data & Media loading...


Article metrics loading...



Ferroelectric HfO-based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-O bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd