Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008).
2. A. N. Frey, S. Peng, K. Cheng, and S. Sun, Chem. Soc. Rev. 38, 2532 (2009).
3. M. D. Shultz, S. Calvin, P. P. Fatouros, S. A. Morrison, and E. E. Carpenter, J. Magn. Magn. Mater. 311, 464 (2007).
4. H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin, and K. H. Chen, Nanoscale 5, 262 (2013).
5. T. Barrett, H. Kobayashi, M. Brechbiel, and P. L. Choyke, Eur. J. Radiol. 60, 353 (2006).
6. S. H. Choi and W. K. Moon, Korean J. Radiol. 11, 383 (2010).
7. A. M. Schmidt, Colloid Polym. Sci. 285, 953 (2007).
8. C. Sun, J. S. H. Lee, and M. Zhang, Adv. Drug Delivery Rev. 60, 1252 (2008).
9. S. Bae, S. W. Lee, A. Hirukawa, Y. Takemura, Y. H. Jo, and S. G. Lee, IEEE Trans. Nanotechnol. 8, 86 (2009).
10. J. Huang, X. Zhong, L. Wang, L. Yang, and H. Mao, Theranostics 2, 86 (2012).
11. Z. Zhao, Z. Zhou, J. Bao, Z. Wang, J. Hu, X. Chi, K. Ni, R. Wang, X. Chen, Z. Chen, and J. Gao, Nat. Commun. 4, 2266 (2013).
12. S. H. Koenig and K. E. Kellar, Magn. Reson. Med. 34, 227 (1995).
13. E. Terreno, D. D. Castelli, A. Viale, and S. Aime, Chem. Rev. 110, 3019 (2010).
14. K. A. Brown, C. C. Vassiliou, D. Issadore, J. Berezovsky, M. J. Cima, and R. M. Westervelt, J. Magn. Magn. Mater. 322, 3122 (2010).
15. E. D. Smolensky, H.-Y. E. Park, Y. Zhou, G. A. Rolla, M. Marjanska, M. Botta, and V. C. Pierre, J. Mater. Chem. B 1, 2818 (2013).
16. J. E. Werner, A. Datta, C. J. Jocher, and K. N. Raymond, Angew. Chem., Int. Ed. Engl. 47, 8568 (2008).
17. V. C. Pierre, M. Botta, S. Aime, and K. N. Raymond, J. Am. Chem. Soc. 128, 9272 (2006).
18. L. Feng, L. Wu, and X. Qu, Adv. Mater. 25, 168 (2013).
19. X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, J. Mater. Chem. 21, 3448 (2011).
20. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen, J. Mater. Chem. 19, 2710 (2009).
21. W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, and Z. Zhang, ACS Appl. Mater. Interfaces 3, 4085 (2011).
22. M. Liu, C. Chen, J. Hu, X. Wu, and X. Wang, J. Phys. Chem. C 115, 25234 (2011).
23. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
24. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
25. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, Jr., C. A. Ventrice, Jr., and R. S. Ruoff, Carbon 47, 145 (2009).
26. A. L. Patterson, Phys. Rev. 56, 978 (1939).
27. S. Sladkevich, J. Gun, P. V. Prikhodchenko, V. Gutkin, A. A. Mikhaylov, V. M. Novotortsev, J. X. Zhu, D. Yang, H. H. Hng, Y. Y. Tay, Z. Tsakadze, and O. Lev, Nanotechnology 23, 485601 (2012).
28. H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, and K. Du, Appl. Surf. Sci. 258, 4917 (2012).
29. H. He and C. Gao, ACS Appl. Mater. Interfaces 2, 3201 (2010).
30. M. Fang, V. Ström, R. T. Olsson, L. Belova, and K. V. Rao, Nanotechnology 23, 145601 (2012).
31. Y. Koseoglu and H. Kavas, J. Nanosci. Nanotechnol. 8, 584 (2008).
32. H. Iida, K. Takayanagi, T. Nakanishi, and T. Osaka, J. Colloids Interface Sci. 314, 274 (2007).
33. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials ( John Wiley and Sons. Inc., New Jersey, 2009).
34. S. V. Berkum and B. H. Erne, Int. J. Mol. Sci. 14, 18093 (2013).
35. O. Strbak, D. Gogola, and I. Frollo, in MEASUREMENT 2011, Proceedings of the 8th International Conference, Smolenice, Slovakia ( VEDA, publishing house of the Slovak Academy of Sciences, 2011), p. 115.
36. C. W. Jung and P. Jacobs, Magn. Reson. Imaging 13, 661 (1995).
37. Y. X. Wang, S. M. Hussain, and G. P. Krestin, Eur. Radiol. 11, 2319 (2001).
38. B. Feng, R. Y. Hong, Y. J. Wu, G. H. Liu, L. H. Zhong, Y. Zheng, J. M. Ding, and D. G. Wei, J. Alloys Compd. 473, 356 (2009).
39. V. Jacques, S. Dumas, W. C. Sun, J. S. Troughton, M. T. Greenfield, and P. Caravan, Invest. Radiol. 45, 613 (2010).
40. S. Laus, R. Ruloff, E. Tóth, and A. E. Merbach, Chem. Eur. J. 9, 3555 (2003).
41. Z. Jászberényi, A. Sour, É. Tóth, M. Benmelouka, and A. E. Merbach, Dalton Trans. 16, 2713 (2005).
42. A. Datta and K. N. Raymond, Acc. Chem. Res. 42, 938 (2009).

Data & Media loading...


Article metrics loading...



The potential of graphene oxide–FeO nanoparticle (GO-FeO) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-FeO composites synthesized by precipitating FeO nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-FeO composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-FeO composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd