Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Baker, J. F. C. and Hart, M. , “ An absolute measurement of the lattice parameter of germanium using multiple-beam X-ray diffractometry,” Acta. Cryst. A 31, 364367 (1975).
2. Batterman, B. W. and Chipman, D. R. , “ Vibrational amplitudes in germanium and silicon,” Phys. Rev. 127, 690693 (1962).
3. Bearden, J. A. and Burr, A. F. , “ Reevaluation of X-ray atomic energy levels,” Rev. Mod. Phys. 39, 125142 (1967).
4. Chao, M.-H. , Kariuki, B. M. , Harris, K. D. M. , Collins, S. P. , and Laundy, D. , “ Design of a solid inclusion compound with optimal properties as a linear dichroic filter for X-ray polarization analysis,” Angew. Chem. Int. Ed. 42, 29822985 (2003).
5. DuMond, J. W. M. , “ Theory of the use of more than two successive X-ray crystal reflections to obtain increased resolving power,” Phys. Rev. 52, 872883 (1937).
6. Guillaume, F. , Smart, S. P. , Harris, K. D. M. , and Dianoux, A. J. , “ Neutron scattering investigations of guest molecular dynamics in α, ω-dibromoalkane-urea inclusion compounds,” J. Phys.: Condens. Matter 6, 21692184 (1994).
7. Harris, K. D. M. , Smart, S. P. , and Hollingsworth, M. D. , “ Structural properties of α, ω-dibromoalkane/urea inclusion compounds: a new type of interchannel guest molecule ordering,” J. Chem. Soc., Faraday Trans. 87, 34233429 (1991).
8. Henke, B. L. , Gullikson, E. M. , and Davis, J. C. , “ X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181342 (1993). Updated anomalous dispersion corrections for Si are available on the CXRO website; these have been used here.
9. Jackson, J. D. , Classical Electrodynamics, 2nd ed. ( John Wiley and Sons, New York, 1975), p. 674.
10. Mohr, P. J. , Taylor, B. N. , and Newell, D. B. , “ CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 15271605 (2012).
11. Palmer, B. A. , Edwards-Gau, G. R. , Kariuki, B. M. , Harris, K. D. M. , Dolbnya, I. P. , and Collins, S. P. , “ X-ray birefringence imaging,” Science 344, 10131016 (2014).
12. Palmer, B. A. , Edwards-Gau, G. R. , Kariuki, B. M. , Harris, K. D. M. , Dolbnya, I. P. , Collins, S. P. , and Sutter, J. P. , “ X-ray birefringence imaging of materials with anisotropic molecular dynamics,” J. Phys. Chem. Lett. 6, 561567 (2015).
13. Palmer, B. A. , Edwards-Gau, G. R. , Morte-Ródenas, A. , Kariuki, B. M. , Lim, G. K. , Harris, K. D. M. , Dolbnya, I. P. , and Collins, S. P. , “ X-ray birefringence: a new strategy for determining molecular orientation in materials,” J. Phys. Chem. Lett. 3, 32163222 (2012).
14. Palmer, B. A. , Morte-Ródenas, A. , Kariuki, B. M. , Harris, K. D. M. , and Collins, S. P. , “ X-ray birefringence from a model anisotropic crystal,” J. Phys. Chem. Lett. 2, 23462351 (2011).
15. Sánchez del Río, M. , Canestrari, N. , Jiang, F. , and Cerrina, F. , “ SHADOW3: A new version of the synchrotron X-ray optics modeling package,” J. Synchrotron Rad. 18, 708716 (2011).
16. Shvyd'ko, Yu. V. , Gerdau, E. , Jäschke, J. , Leupold, O. , Lucht, M. , and Rüter, H. D. , “ Exact Bragg backscattering of X-rays,” Phys. Rev. B 57, 49684971 (1998).
17. Waasmaier, D. and Kirfel, A. , “ New analytical scattering-factor functions for free atoms and ions,” Acta Cryst. A 51, 416431 (1995).
18. Zachariasen, W. H. , Theory of X-Ray Diffraction in Crystals ( John Wiley and Sons, New York, 1945), chap. III.

Data & Media loading...


Article metrics loading...



In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd