Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/16/10.1063/1.4919416
1.
1. D. B. Go and D. A. Pohlman, J. Appl. Phys. 107, 103303 (2010).
http://dx.doi.org/10.1063/1.3380855
2.
2. A. Semnani, A. Venkattraman, A. A. Alexeenko, and D. Peroulis, Appl. Phys. Lett. 103, 063102 (2013).
http://dx.doi.org/10.1063/1.4817978
3.
3. J. J. Shi and M. G. Kong, Phys. Rev. Lett. 96, 105009 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.105009
4.
4. F. Iza, J. K. Lee, and M. G. Kong, Phys. Rev. Lett. 99, 075004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.075004
5.
5. N. Balcon, G. Hagelaar, and J. Boeuf, IEEE Trans. Plasma Sci. 36, 2782 (2008).
http://dx.doi.org/10.1109/TPS.2008.2003135
6.
6. J. Xue and J. A. Hopwood, IEEE Trans. Plasma Sci. 37, 816 (2009).
http://dx.doi.org/10.1109/TPS.2009.2015453
7.
7. D. W. Liu, F. Iza, and M. G. Kong, Plasma Processes Polym. 6, 446 (2009).
http://dx.doi.org/10.1002/ppap.200930009
8.
8. J. J. Shi and M. G. Kong, J. Appl. Phys. 97, 023306 (2005).
http://dx.doi.org/10.1063/1.1834978
9.
9. H. C. Kwon, I. H. Won, and J. K. Lee, Appl. Phys. Lett. 100, 183702 (2012).
http://dx.doi.org/10.1063/1.4711207
10.
10. J. Y. Lee, H. W. Bae, H. J. Lee, and J. P. Verboncoeur, Plasma Sources Sci. Technol. 23, 035017 (2014).
http://dx.doi.org/10.1088/0963-0252/23/3/035017
11.
11. K. McKay, F. Iza, and M. G. Kong, Eur. Phys. J. D 60, 497 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00191-7
12.
12. A. Yang, M. Rong, X. Wang, D. Liu, and M. G. Kong, J. Phys. D: Appl. Phys. 46, 415201 (2013).
http://dx.doi.org/10.1088/0022-3727/46/41/415201
13.
13. J. Hopwood, A. R. Hoskinson, and J. Gregório, Plasma Sources Sci. Technol. 23, 064002 (2014).
http://dx.doi.org/10.1088/0963-0252/23/6/064002
14.
14. A. R. Hoskinson and J. Hopwood, Plasma Sources Sci. Technol. 23, 015024 (2014).
http://dx.doi.org/10.1088/0963-0252/23/1/015024
15.
15. N. Miura and J. Hopwood, Eur. Phys. J. D 66, 143 (2012).
http://dx.doi.org/10.1140/epjd/e2012-20739-7
16.
16. D. Cvejanović, A. Adams, and G. C. King, J. Phys. B 11, 1653 (1978).
http://dx.doi.org/10.1088/0022-3700/11/9/018
17.
17. Q. Wang, F. Doll, V. M. Donnelly, D. J. Economou, N. Sadeghi, and G. F. Franz, J. Phys. D: Appl. Phys. 40, 4202 (2007).
http://dx.doi.org/10.1088/0022-3727/40/14/015
18.
18. C. Chen, Y. Sheng, S. Yu, and X. Ma, J. Chem. Phys. 101, 5727 (1994).
http://dx.doi.org/10.1063/1.467358
19.
19. J. L. Cooper and J. C. Whitehead, J. Chem. Soc., Faraday Trans. 89, 1287 (1993).
http://dx.doi.org/10.1039/ft9938901287
20.
20. X.-M. Zhu, J. L. Walsh, W.-C. Chen, and Y.-K. Pu, J. Phys. D: Appl. Phys. 45, 295201 (2012).
http://dx.doi.org/10.1088/0022-3727/45/29/295201
21.
21. N. Miura and J. Hopwood, J. Appl. Phys. 109, 113303 (2011).
http://dx.doi.org/10.1063/1.3592269
22.
22. F. Iza and J. Hopwood, Plasma Sources Sci. Technol. 14, 397 (2005).
http://dx.doi.org/10.1088/0963-0252/14/2/023
23.
23. A. D. Richards, B. E. Thompson, and H. H. Sawin, Appl. Phys. Lett. 50, 492 (1987).
http://dx.doi.org/10.1063/1.98183
24.
24. A. Salabas, G. Gousset, and L. L. Alves, Plasma Sources Sci. Technol. 11, 448 (2002).
http://dx.doi.org/10.1088/0963-0252/11/4/312
25.
25. J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, Plasma Sources Sci. Technol. 21, 015013 (2012).
http://dx.doi.org/10.1088/0963-0252/21/1/015013
26.
26. A. Yanguas-Gil, J. Cotrino, and L. L. Alves, J. Phys. D: Appl. Phys. 38, 1588 (2005).
http://dx.doi.org/10.1088/0022-3727/38/10/014
27.
27. K. J. McCann, M. R. Flannery, and A. Hazi, Appl. Phys. Lett. 34, 543 (1979).
http://dx.doi.org/10.1063/1.90880
28.
28. J. Bretagne, J. Godart, and V. Puech, J. Phys. D: Appl. Phys. 15, 2205 (1982).
http://dx.doi.org/10.1088/0022-3727/15/11/014
29.
29. J. Jonkers, M. van de Sande, A. Sola, A. Gamero, A. Rodero, and J. van der Mullen, Plasma Sources Sci. Technol. 12, 464 (2003).
http://dx.doi.org/10.1088/0963-0252/12/3/323
30.
30. A. J. Cunningham, T. F. O'Malley, and R. M. Hobson, J. Phys. B: At. Mol. Phys. 14, 773 (1981).
http://dx.doi.org/10.1088/0022-3700/14/4/024
31.
31. V. Puech, Ph.D. dissertation, Universit Paris-Sud XI, 1981.
32.
32. F. Kannari, A. Suda, M. Obara, and T. Fujioka, IEEE J. Quantum Electron. 19, 1587 (1983).
http://dx.doi.org/10.1109/JQE.1983.1071763
33.
33. S. K. Lam, C.-E. Zheng, D. Lo, A. Dem'yanov, and A. P. Napartovich, J. Phys. D: Appl. Phys. 33, 242 (2000).
http://dx.doi.org/10.1088/0022-3727/33/3/310
34.
34. T. Holstein, Phys. Rev. 72, 1212 (1947).
http://dx.doi.org/10.1103/PhysRev.72.1212
35.
35. T. Holstein, Phys. Rev. 83, 1159 (1951).
http://dx.doi.org/10.1103/PhysRev.83.1159
36.
36. J. P. Walsh, Phys. Rev. 116, 511 (1959).
http://dx.doi.org/10.1103/PhysRev.116.511
37.
37. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “ NIST Atomic Spectra Database (ver. 5.2),” see http://physics.nist.gov/asd [2014, November], National Institute of Standards and Technology, Gaithersburg, MD (2014).
38.
38. J.-P. Boeuf and L. C. Pitchford, Phys. Rev. E 51, 1376 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.1376
39.
39. L. L. Alves, Plasma Sources Sci. Technol. 16, 557 (2007).
http://dx.doi.org/10.1088/0963-0252/16/3/015
40.
40. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).
http://dx.doi.org/10.1088/0963-0252/14/4/011
41.
41. S. Pancheshnyi, S. Biagi, M. Bordage, G. Hagelaar, W. Morgan, A. Phelps, and L. Pitchford, Chem. Phys. 398, 148 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.04.020
42.
42.LXCAT, “ IST-Lisbon database,” see http://fr.lxcat.net [2014, November].
43.
43. H. Ellis, M. Thackston, E. McDaniel, and E. Mason, At. Data Nucl. Data Tables 31, 113 (1984).
http://dx.doi.org/10.1016/0092-640X(84)90018-4
44.
44. C. M. Ferreira, J. Loureiro, and A. Ricard, J. Appl. Phys. 57, 82 (1985).
http://dx.doi.org/10.1063/1.335400
45.
45. G. J. M. Hagelaar, G. Fubiani, and J.-P. Boeuf, Plasma Sources Sci. Technol. 20, 015001 (2011).
http://dx.doi.org/10.1088/0963-0252/20/1/015001
46.
46. G. J. M. Hagelaar and G. M. W. Kroesen, J. Comput. Phys. 159, 1 (2000).
http://dx.doi.org/10.1006/jcph.2000.6445
47.
47. J. P. Boeuf, Phys. Rev. A 36, 2782 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.2782
48.
48. M. Baeva, A. Bösel, J. Ehlbeck, and D. Loffhagen, Phys. Rev. E 85, 056404 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.056404
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/16/10.1063/1.4919416
Loading
/content/aip/journal/jap/117/16/10.1063/1.4919416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/16/10.1063/1.4919416
2015-04-29
2016-12-09

Abstract

We systematically measure and model the behavior of argon microplasmas sustained by a broad range of microwave frequencies. The plasma behavior exhibits two distinct regimes. Up to a transition frequency of approximately 4 GHz, the electron density, directly measured by Stark broadening, increases rapidly with rising frequency. Above the transition frequency, the density remains approximately constant near 5 × 1020 m–3. The electrode voltage falls with rising frequency across both regimes, reaching approximately 5 V at the highest tested frequency. A fluid model of the plasma indicates that the falling electrode voltage reduces the electron temperature and significantly improves particle confinement, which in turn increases the plasma density. Particles are primarily lost to the electrodes at lower frequencies, but dissociative recombination becomes dominant as particle confinement improves. Recombination events produce excited argon atoms which are efficiently re-ionized, resulting in relatively constant ionization rates despite the falling electron temperature. The fast rates of recombination are the result of high densities of electrons and molecular ions in argon microplasmas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/16/1.4919416.html;jsessionid=0T1lgnAkg96nZWKjs58mh2TA.x-aip-live-06?itemId=/content/aip/journal/jap/117/16/10.1063/1.4919416&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/16/10.1063/1.4919416&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/16/10.1063/1.4919416'
Right1,Right2,Right3,