Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Damjanovic, Rep. Prog. Phys. 61, 12671324 (1998).
2. K. G. Webber, D. J. Franzbach, and J. Koruza, J. Am. Ceram. Soc. 97(9), 28422849 (2014).
3. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, P. J. Withers, and T. Mori, J. Mech. Phys. Solids 53, 249260 (2005).
4. A. Pramanick, D. Damjanovic, J. E. Daniels, J. C. Nino, and J. L. Jones, J. Am. Ceram. Soc. 94, 293309 (2011).
5. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, and P. J. Withers, J. Appl. Phys. 96, 42454252 (2004).
6. D. A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, and P. J. Withers, Acta Mater. 54, 30753083 (2006).
7. J. L. Jones, E. B. Slamovich, and K. J. Bowman, J. Appl. Phys. 97, 034113 (2005).
8. J. L. Jones, B. J. Iverson, and K. J. Bowman, J. Am. Ceram. Soc. 90, 22972314 (2007).
9. K. A. Schönau, M. Knapp, H. Kungl, M. J. Hoffmann, and H. Fuess, Phys. Rev. B 76, 144112 (2007).
10. A. K. Singh, S. K. Mishra, Ragini, D. Pandey, S. Yoon, S. Baik, and N. Shin, Appl. Phys. Lett. 92, 022910 (2008).
11. A. Pramanick, J. E. Daniels, and J. L. Jones, J. Am. Ceram. Soc. 92, 23002310 (2009).
12. J. E. Daniels, W. Jo, J. Rödel, V. Honkimäki, and J. L. Jones, Acta Mater. 58, 21032111 (2010).
13. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 7193 (2012).
14. L. Daniel, D. A. Hall, K. G. Webber, A. King, and P. J. Withers, J. Appl. Phys. 115, 174102 (2014).
15. R. Dittmer, K. G. Webber, E. Aulbach, W. Jo, X. Tan, and J. Rödel, Sens. Actuators, A 189, 187194 (2013).
16. K. G. Webber, E. Aulbach, and J. Rödel, J. Phys. D: Appl. Phys. 43, 365401 (2010).
17. Y. H. Seo, A. Bencan, J. Koruza, B. Malic, M. Kosec, and K. G. Webber, J. Am. Ceram. Soc. 94(12), 44194425 (2011).
18. A. P. Hammersley, ESRF Internal Report No. ESRF98HA01T, FIT2D V9.129 Reference Manual V3.1, 1998.
19. A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Häusermann, High Pressure Res. 14, 235248 (1996).
20.See for a description of the loading device.
21. D. Faurie, O. Castelnau, R. Brenner, P. O. Renault, E. Le Bourhis, and Ph. Goudeau, J. Appl. Crystallogr. 42, 10731084 (2009).
22. M. R. Daymond, J. Appl. Phys. 96(8), 42634272 (2004).
23. J. E. Daniels, T. R. Finlayson, A. J. Studer, M. Hoffman, and J. L. Jones, J. Appl. Phys. 101, 094104 (2007).
24. Y. H. Seo, J. Koruza, A. Bencan, B. Malic, J. Rödel, and K. G. Webber, J. Am. Ceram. Soc. 97(5), 15821588 (2014).
25.Piezoelectric and Acoustic Materials for Transducer Applications, edited by A. Safari and E. Koray Akdog̃an ( Springer, 2008).
26. Y. H. Seo, D. J. Franzbach, J. Koruza, A. Bencan, B. Malic, M. Kosec, J. L. Jones, and K. G. Webber, Phys. Rev. B 87, 094116 (2013).
27. L. Daniel, D. A. Hall, and P. J. Withers, Mech. Mater. 71, 85100 (2014).
28. R. Corcolle, L. Daniel, and F. Bouillault, Phys. Rev. B 78(21), 214110 (2008).

Data & Media loading...


Article metrics loading...



The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (PbBa(ZrTi)NbO). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd