Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/19/10.1063/1.4921167
1.
1. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, Chem. Rev. 99, 2293 (1999).
http://dx.doi.org/10.1021/cr980440x
2.
2. N. Cherkashyna et al., “ Overcoming high energy backgrounds at pulsed spallation sources,” in Proceedings of International Conference on Advanced Neutron Sources ICANS XXI [J. Neutron Res. (to be published)]; e-print arXiv:1501.02364.
3.
3.S. Peggs et al., ESS Technical Design Report, ESS-2013-0001 (2013).
4.
4. R. K. Crawford, R. Dean, P. Ferguson, J. Galambos, F. Gallmeier, T. McManamy, and M. Rennich, J. Phys.: Conf. Ser. 251, 012054 (2010).
http://dx.doi.org/10.1088/1742-6596/251/1/012054
5.
5. A. Cho, Science 326, 778 (2009).
http://dx.doi.org/10.1126/science.326_778
6.
6. D. Kramer, Phys. Today 64(5), 20 (2011).
http://dx.doi.org/10.1063/1.3591998
7.
7. K. Zeitelhack, Neutron News 23(4), 1013 (2012).
http://dx.doi.org/10.1080/10448632.2012.725325
8.
8.See http://www.icnd.org for International collaboration on the development of neutron detectors.
9.
9. T. Bigault, J. Birch, J. C. Buffet, J. Correa, R. Hall-Wilton, L. Hultman, C. Höglund, B. Guérard, A. Khaplanov, F. Piscitelli, and P. van Esch, Neutron News 23(4), 20 (2012).
http://dx.doi.org/10.1080/10448632.2012.725329
10.
10. M. O. Klein, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 2000.
11.
11. J. L. Lacy, A. Athanasiades, L. Sun, C. S. Martin, T. D. Lyons, M. A. Foss, and H. B. Haygood, Nucl. Instrum. Methods Phys. Res., Sect. A 652, 359 (2011).
http://dx.doi.org/10.1016/j.nima.2010.09.011
12.
12. I. Stefanescu, Y. Abdullahi, J. Birch, I. Defendi, R. Hall-Wilton, C. Höglund, L. Hultman, D. Seiler, and K. Zeitelhack, Nucl. Instrum. Methods Phys. Res., Sect. A 727, 109 (2013).
http://dx.doi.org/10.1016/j.nima.2013.06.003
13.
13. I. Stefanescu, Y. Abdullahi, J. Birch, I. Defendi, R. Hall-Wilton, C. Höglund, L. Hultman, M. Zee, and K. Zeitelhack, J. Instrum. 8, P12003 (2013).
http://dx.doi.org/10.1088/1748-0221/8/12/P12003
14.
14. M. Henske, M. Klein, M. Köhli, P. Lennert, G. Modzel, C. J. Schmidt, and U. Schmidt, Nucl. Instrum. Methods Phys. Res., Sect. A 686, 151 (2012).
http://dx.doi.org/10.1016/j.nima.2012.05.075
15.
15. F. Piscitelli, J. C. Buffet, J. F. Clergeau, S. Cuccaro, B. Guérard, A. Khaplanov, Q. L. Manna, J. M. Rigal, and P. V. Esch, J. Instrum. 9, P03007 (2014).
http://dx.doi.org/10.1088/1748-0221/9/03/P03007
16.
16. C. Höglund, J. Birch, K. Andersen, T. Bigault, J. C. Buffet, J. Correa, P. Van Esch, B. Guerard, R. Hall-Wilton, J. Jensen, A. Khaplanov, F. Piscitelli, C. Vettier, W. Vollenberg, and L. Hultman, J. Appl. Phys. 111, 104908 (2012).
http://dx.doi.org/10.1063/1.4718573
17.
17.L. Hultman, J. Birch, and C. Höglund, Patent SE 535 805 C2 (30 June 2011).
18.
18. C. Höglund, K. Zeitelhack, P. Kudejova, J. Jensen, G. Greczynski, J. Lu, L. Hultman, J. Birch, and R. Hall-Wilton, J. Rad. Phys. Chem. 113, 14 (2015).
http://dx.doi.org/10.1016/j.radphyschem.2015.04.006
19.
19. G. Nowak, M. Störmer, H.-W. Becker, C. Horstman, R. Kampmann, D. Höche, M. Haese-Seiller, J.-F. Moulin, M. Pomm, C. Randau, U. Lorenz, R. Hall-Wilton, M. Müller, and A. Schreyer, J. Appl. Phys. 117, 034901 (2015).
http://dx.doi.org/10.1063/1.4905716
20.
20. O. Kirstein et al., “ Neutron position sensitive detectors for the ESS,” Proceedings of Science, VERTEX'14 (2014), p. 029.
21.
21. R. Hall-Wilton, C. Höglund, M. Imam, K. Kanaki, A. Khaplanov, O. Kirstein, T. Kittelmann, B. Nilsson, and J. Scherzinger, IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. 2012, 4283.
22.
22. F. Piscitelli, Ph.D. thesis, University of Perugia, 2014.
23.
23. F. Piscitelli and P. Van Esch, J. Instrum. 8, P04020 (2013).
http://dx.doi.org/10.1088/1748-0221/8/04/P04020
24.
24. J. Correa, Ph.D. thesis, University of Zaragoza, 2012.
25.
25. K. Andersen, T. Bigault, J. Birch, J.-C. Buffet, J. Correa, P. vanEsch, B. Guerard, R. Hall-Wilton, L. Hultman, C. Höglund, J. Jensen, A. Khaplanov, O. Kirstein, F. Piscitelli, and C. Vettier, “ Multi-grid boron-10 detector for large area applications in neutron scattering science,” in Proceedings of ICANS XX (2012).
26.
26. K. Andersen, T. Bigault, J. Birch, J. C. Buffet, J. Correa, R. Hall-Wilton, L. Hultman, C. Höglund, B. Guérard, J. Jensen, A. Khaplanov, O. Kirstein, F. Piscitelli, P. Van Esch, and C. Vettier, Nucl. Instrum. Methods Phys. Res., Sect. A 720, 116 (2013).
http://dx.doi.org/10.1016/j.nima.2012.12.021
27.
27. J. Birch, J. C. Buffet, J. Correa, P. van Esch, B. Guérard, R. Hall-Wilton, C. Höglund, L. Hultman, A. Khaplanov, and F. Piscitelli, Trans. Nucl. Sci. 60(2), 871 (2013).
http://dx.doi.org/10.1109/TNS.2012.2227798
28.
28. D. Pfeiffer, IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2014, N46-5.
29.
29. C. Schulz, “ Entwicklung eines neuartigen Niederdruck-Detektors mit hoher Orts- und Flugzeitauflösung zum Nachweis thermischer Neutronen,” Ph.D. dissertation ( Freie Universität Berlin, Berlin, Germany, 1999).
30.
30. M. Titov and L. Ropelewski, “ Micro-pattern gaseous detector technologies and RD51 collaboration,” Mod. Phys. Lett. A 28, 1340022 (2013).
http://dx.doi.org/10.1142/S0217732313400221
31.
31. A. Oed, Nucl. Instrum. Methods Phys. Res., Sect. A 263, 351 (1988).
http://dx.doi.org/10.1016/0168-9002(88)90970-9
32.
32. B. Mindur, S. Alimov, T. Fiutowski, C. Schulz, and T. Wilpert, J. Instrum. 9, P12004 (2014).
http://dx.doi.org/10.1088/1748-0221/9/12/P12004
33.
33. F. Sauli, “ GEM: A new concept for electron amplification in gas detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 386, 531 (1997).
http://dx.doi.org/10.1016/S0168-9002(96)01172-2
34.
34. G. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998).
http://dx.doi.org/10.1021/cr940055h
35.
35.International Conference Advanced Neutron Sources XXI Mito, Japan (2014), Abstracts S-01–S-07, session 9, shielding.
36.
36. N. Cherkashyna et al., “ High energy particle background at neutron spallation sources and possible solutions,” J. Phys.: Conf. Ser. 528, 012013 (2014).
37.
37. F. Leuenberger, A. Parge, W. Felsch, K. Fauth, and M. Hessler, Phys. Rev. B 72, 014427 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014427
38.
38. E. Shalaan and H. Schmitt, Opt. Commun. 260, 588 (2006).
http://dx.doi.org/10.1016/j.optcom.2005.11.003
39.
39. K. Senapati, F. Thomas, M. E. Vickers, M. G. Blamire, and Z. H. Barber, Phys. Rev. B 83, 014403 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.014403
40.
40. H. Yoshitomi, S. Kitayama, T. Kita, O. Wada, M. Fujisawa, H. Ohta, and T. Sakurai, Phys. Rev. B 83, 155202 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155202
41.
41. W. R. McKenzie, P. R. Munroe, F. Budde, B. J. Ruck, S. Granville, and H. J. Trodahl, Curr. Appl. Phys. 6, 407 (2006).
http://dx.doi.org/10.1016/j.cap.2005.11.029
42.
42. J. Kennedy, S. Granville, A. Markwitz, B. J. Ruck, and H. J. Trodahl, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1558 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.01.052
43.
43. S. Granville, B. J. Ruck, F. Budde, A. Koo, D. J. Pringle, F. Kuchler, A. R. H. Preston, D. H. Housden, N. Lund, A. Bittar, G. V. M. Williams, and H. J. Trodahl, Phys. Rev. B 73, 235335 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235335
44.
44. J. W. Gerlach, J. Mennig, and B. Rauschenbach, Appl. Phys. Lett. 90, 061919 (2007).
http://dx.doi.org/10.1063/1.2472538
45.
45. F. Natali, N. O. V. Plank, J. Galipaud, B. J. Ruck, H. J. Trodahl, F. Semond, S. Sorieul, and L. Hirsch, J. Cryst. Growth 312, 3583 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.09.030
46.
46. A. P. Milanov, T. B. Thiede, A. Devi, and R. A. Fischer, J. Am. Chem. Soc. 131, 17062 (2009).
http://dx.doi.org/10.1021/ja907952g
47.
47. J. R. Brewer, Z. Gernhart, H.-Y. Liu, and C. L. Cheung, Chem. Vap. Deposition 16, 216 (2010).
http://dx.doi.org/10.1002/cvde.201004288
48.
48. H. J. Trodahl, A. R. H. Preston, J. Zhong, B. J. Ruck, N. M. Strickland, C. Mitra, and W. R. L. Lambrecht, Phys. Rev. B 76, 085211 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085211
49.
49. P. Wachter, Results Phys. 2, 90 (2012).
http://dx.doi.org/10.1016/j.rinp.2012.07.003
50.
50. B. Alling, C. Höglund, R. Hall-Wilton, and L. Hultman, Appl. Phys. Lett. 98, 241911 (2011).
http://dx.doi.org/10.1063/1.3600059
51.
51. L. Hultman, Vacuum 57, 1 (2000).
http://dx.doi.org/10.1016/S0042-207X(00)00143-3
52.
52. L. E. Toth, Transition Metal Carbides and Nitrides ( Academic, New York, 1971), p. 188.
53.
53. J. L. Ruan, D. F. Lii, J. S. Chen, and J. L. Huang, Ceram. Int. 35, 1999 (2009).
http://dx.doi.org/10.1016/j.ceramint.2008.11.002
54.
54. J. Birch, S. Tungasmita, and V. Darakchieva, Vacuum Science and Technology: Nitrides as Seen by Technology ( Research Signpost, Trivandrum, 2002), pp. 421456.
55.
55. M. S. Janson, “ CONTES conversion of time-energy spectra—A program for ERDA data analysis,” Internal Report, Uppsala University, 2004.
56.
56. C. Höglund, B. Alling, J. Birch, M. Beckers, P. O. Å. Persson, C. Baehtz, Z. Czigány, J. Jensen, and L. Hultman, Phys. Rev. B 81, 224101 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224101
57.
57. C. Höglund, J. Bareno, J. Birch, B. Alling, Z. Czigány, and L. Hultman, J. Appl. Phys. 105, 113517 (2009).
http://dx.doi.org/10.1063/1.3132862
58.
58. C. Höglund, J. Birch, B. Alling, J. Bareño, Z. Czigány, P. O. A. Persson, G. Wingqvist, A. Zukauskaite, and L. Hultman, J. Appl. Phys. 107, 123515 (2010).
http://dx.doi.org/10.1063/1.3448235
59.
59. B. Alling, A. Karimi, and I. Abrikosov, Surf. Coat. Technol. 203, 883 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.08.027
60.
60. L. Vegard, Z. Phys. 5, 17 (1921).
http://dx.doi.org/10.1007/BF01349680
61.
61. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol., A 21(5), S117 (2003).
http://dx.doi.org/10.1116/1.1601610
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/19/10.1063/1.4921167
Loading
/content/aip/journal/jap/117/19/10.1063/1.4921167
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/19/10.1063/1.4921167
2015-05-15
2016-09-30

Abstract

We report ZrGdN thin films deposited by magnetron sputter deposition. We show a solid solubility of the highly neutron absorbing GdN into ZrN along the whole compositional range, which is in excellent agreement with our recent predictions by first-principles calculations. An oxidization study in air shows that ZrGdN with x reaching from 1 to close to 0 fully oxidizes, but that the oxidization is slowed down by an increased amount of ZrN or stopped by applying a capping layer of ZrN. The crystalline quality of ZrGdN films increases with substrate temperatures increasing from 100 °C to 900 °C.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/19/1.4921167.html;jsessionid=o4KFkhxQKL66pS383_f6b7h2.x-aip-live-06?itemId=/content/aip/journal/jap/117/19/10.1063/1.4921167&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/19/10.1063/1.4921167&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/19/10.1063/1.4921167'
Right1,Right2,Right3,