Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, ACS Appl. Mater. Interfaces 5, 2881 (2013).
2. M. J. Ruedas-Rama, A. Orte, E. A. H. Hall, J. M. Alvarez-Pez, and Eva M. Talavera, Chem. Commun. 47, 2898 (2011).
3. E. Petryayeva, W. R. Algar, and I. L. Medintz, Appl. Spec. 67, 215 (2013).
4. U. Kaiser, D. Jimenez de Aberasturi, R. Malinowski, F. Amin, W. J. Parak, and W. Heimbrodt, Appl. Phys. Lett. 104, 041901 (2014).
5. T. Förster, Z. Naturforschung 4A, 321 (1949).
6.FRET from Theory to application, edited by I. Medintz and N. Hildebrandt ( Wiley-VCH, 2014).
7. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc. 126, 301 (2004).
8. K. D. Wegner, F. Morgner, E. Oh, R. Goswami, K. Susumu, M. H. Stewart, I. L. Medintz, and N. Hildebrandt, Chem. Mater. 26, 4299 (2014).
9. M. Fernández-Argüelles and A. Yakovlev, Nano Lett. 7, 2613 (2007).
10. F. Zhang, E. Lees, F. Amin, P. Rivera Gil, F. Yang, P. Mulvaney, and W. J. Parak, Small 7, 3113 (2011).
11. A. V. Yakovlev, F. Zhang, A. Zulqurnain, A. Azhar-Zahoor, C. Luccardini, S. Gaillard, J.-M. Mallet, P. Tauc, J.-C. Brochon, W. J. Parak, A. Feltz, and M. Oheim, Langmuir 25, 3232 (2009).
12. A. Striolo, J. Ward, and J. Prausnitz, J. Phys. Chem. B 106, 5500 (2002).
13. W. R. Algar, A. Malonoski, J. R. Deschamps, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, B. J. Johnson, P. E. Dawson, and I. L. Medintz, Nano Lett. 12, 3793 (2012).
14. H. Kim, E. Petryayeva, and W. Algar, IEEE J. Sel. Top. Quantum Electron. 20, 7300211 (2014) .
15. M. J. Ruedas-Rama, J. D. Walters, A. Orte, and E. A. H. Hall, Anal. Chim. Acta 751, 1 (2012).
16. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2010).
17. T. Niebling, F. Zhang, Z. Ali, W. J. Parak, and W. Heimbrodt, J. Appl. Phys. 106, 104701 (2009).
18. T. Pons, I. L. Medintz, X. Wang, D. S. English, and H. Mattoussi, J. Am. Chem. Soc. 128, 15324 (2006).
19. M. Tachiya, Chem. Phys. Lett. 33, 289 (1975).
20. S. Sadhu, M. Tachiya, and A. Patra, J. Phys. Chem. C 113, 19488 (2009).
21.Evident Technologies, Quantum Dot Nanomaterials for Research Specification Sheet, New York, USA (2006).
22. S. J. Soenen, J.-M. Montenegro, A. M. Abdelmonem, B. B. Manshian, S. H. Doak, W. J. Parak, S. C. De Smedt, and K. Braeckmans, Acta Biomater. 10, 732 (2014).
23.ATTO-TEC GmbH, Product Information: ATTO-590, Siegen, Germany (2009).
24.See supplementary material at for a detailed description of the synthesis and mathematical derivation.[Supplementary Material]
25. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
26. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
27. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
28. A. Efros, M. Rosen, M. Kuno, M. Nirmal, D. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
29. O. Labeau, P. Tamarat, and B. Lounis, Phys. Rev. Lett. 90, 257404 (2003).
30. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

Data & Media loading...


Article metrics loading...



Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd