Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/2/10.1063/1.4905297
1.
1. S. M. van der Meer, B. Dollet, M. M. Voormolen, C. T. Chin, A. Bouakaz, N. de Jong, M. Versluis, and D. Lohse, “ Microbubble spectroscopy of ultrasound contrast agents,” J. Acoust. Soc. Am. 121, 648656 (2007).
http://dx.doi.org/10.1121/1.2390673
2.
2. J. R. Wu, J. R. Ross, and J. F. Chiu, “ Reparable sonoporation generated by microstreaming,” J. Acoust. Soc. Am. 111, 14601464 (2002).
http://dx.doi.org/10.1121/1.1420389
3.
3. E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, “ Therapeutic applications of lipid-coated microbubbles,” Adv. Drug Delivery Rev. 56, 12911314 (2004).
http://dx.doi.org/10.1016/j.addr.2003.12.006
4.
4. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, “ Physical mechanisms of the therapeutic effect of ultrasound,” Acoust. Phys. 49, 369388 (2003).
http://dx.doi.org/10.1134/1.1591291
5.
5. H. Lukka, T. Waldron, J. Chin, L. Mayhew, P. Warde, G. Rodrigues, and B. Shayegan, “ High-intensity focused ultrasound for prostate cancer: A systematic review,” Clin. Oncol. 23, 117127 (2011).
http://dx.doi.org/10.1016/j.clon.2010.09.002
6.
6. A. A. Doinikov and A. Bouakaz, “ Review of shell models for contrast agent microbubbles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 981993 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1899
7.
7. N. de Jong, A. Bouakaz, and P. Frinking, “ Basic acoustic properties of microbubbles,” Echocardiography 19, 229240 (2002).
http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x
8.
8. K. Sarkar, W. T. Shi, D. Chatterjee, and F. Forsberg, “ Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation,” J. Acoust. Soc. Am. 118, 539550 (2005).
http://dx.doi.org/10.1121/1.1923367
9.
9. C. C. Church, “ The effects of an elastic solid surface layer on the radial pulsations of gas bubbles,” J. Acoust. Soc. Am. 97, 15101521 (1995).
http://dx.doi.org/10.1121/1.412091
10.
10. L. Hoff, P. C. Sontum, and J. M. Hovem, “ Oscillations of polymeric microbubbles: Effect of the encapsulating shell,” J. Acoust. Soc. Am. 107, 22722280 (2000).
http://dx.doi.org/10.1121/1.428557
11.
11. A. A. Doinikov and P. A. Dayton, “ Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents,” J. Acoust. Soc. Am. 121, 33313340 (2007).
http://dx.doi.org/10.1121/1.2722233
12.
12. J. Jiménez-Fernández, “ Nonlinear response to ultrasound of encapsulated microbubbles,” Ultrasonics 52, 784793 (2012).
http://dx.doi.org/10.1016/j.ultras.2012.02.009
13.
13. M. Mooney, “ A theory of large elastic deformation,” J. Appl. Phys. 11, 582592 (1940).
http://dx.doi.org/10.1063/1.1712836
14.
14. A. Prosperetti, “ Viscous effects on perturbed spherical flows,” Q. Appl. Math. 34, 339352 (1977).
15.
15. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. ( Butterworth-Heinemann, Oxford, 1986), Chap. 1.
16.
16. J. Lubliner, Plasticity Theory, revised ed. ( Dover, New York, 2008), Chap. 8.
17.
17. T. Gao and H. H. Hu, “ Deformation of elastic particles in viscous shear flow,” J. Comput. Phys. 228, 21322151 (2009).
http://dx.doi.org/10.1016/j.jcp.2008.11.029
18.
18. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. ( Butterworth-Heinemann, Oxford, 1987), Chap. 2.
19.
19. L. Trilling, “ The collapse and rebound of a gas bubble,” J. Appl. Phys. 23, 1417 (1952).
http://dx.doi.org/10.1063/1.1701962
20.
20. H. G. Flynn, Physical Acoustics, W. P. Mason ed. ( Academic Press, MA, 1964), Chap. 9.
21.
21. J. B. Keller and M. Miksis, “ Bubble oscillations of large amplitude,” J. Acoust. Soc. Am. 68, 628633 (1980).
http://dx.doi.org/10.1121/1.384720
22.
22. A. Prosperetti and A. Lezzi, “ Bubble dynamics in a compressible liquid. Part 1. First-order theory,” J. Fluid. Mech. 168, 457478 (1986).
http://dx.doi.org/10.1017/S0022112086000460
23.
23. M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “ Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425484 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.425
24.
24. B. Krasovitski and E. Kimmel, “ Stability of an encapsulated bubble shell,” Ultrasonics 44, 216220 (2006).
http://dx.doi.org/10.1016/j.ultras.2005.11.003
25.
25. W. Shao and W. Chen, “ The dynamics of the aspheric encapsulated bubble,” J. Acoust. Soc. Am. 133, 119126 (2013).
http://dx.doi.org/10.1121/1.4770069
26.
26. S. Qin, C. F. Caskey, and K. W. Ferrara, “ Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering,” Phys. Med. Biol. 54, R27R57 (2009).
http://dx.doi.org/10.1088/0031-9155/54/6/R01
27.
27. F. P. Beer, E. R. Johnston, J. T. DeWolf, and D. F. Mazurek, Mechanics of Materials, 6th ed. ( McGraw-Hill, 2012), Chap. 7.
28.
28. C. K. Yeh, S. Y. Su, and W. S. Chen, “ Destruction threshold parameters estimation for ultrasonic contrast agents,” J. Med. Biol. Eng. 25, 159163 (2005).
29.
29. K. Yasui, J. Lee, T. Tuziuti, A. Towata, T. Kozuka, and Y. Iida, “ Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound,” J. Acoust. Soc. Am. 126, 973982 (2009).
http://dx.doi.org/10.1121/1.3179677
30.
30. E. Evans, V. Heinrich, F. Ludwig, and W. Rawicz, “ Dynamic tension spectroscopy and strength of biomembranes,” Biophys. J. 85, 23422350 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74658-X
31.
31. W. Lauterborn, “ Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am. 59, 283293 (1976).
http://dx.doi.org/10.1121/1.380884
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/2/10.1063/1.4905297
Loading
/content/aip/journal/jap/117/2/10.1063/1.4905297
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/2/10.1063/1.4905297
2015-01-08
2016-12-08

Abstract

A model for encapsulated bubble (EB) used in ultrasonic therapy is presented discussing EB's finite amplitude oscillation and rupture under high intensity ultrasound drive. The shell of EB, which is the key to EB dynamics, is treated as a layer of viscoelastic material and its large deformation and stress are expressed analytically. By introducing the critical tolerable stress of the shell material, the threshold drive pressure for the rupture of an EB can be calculated in the framework of the model. The oscillation of an EB on the verge of its rupture is simulated and the results are in agreement with the reported experimental data. The relationship between the drive frequency and EB's rupture is also investigated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/2/1.4905297.html;jsessionid=n5kiRSGc0uFtzAEIZzon6xsL.x-aip-live-06?itemId=/content/aip/journal/jap/117/2/10.1063/1.4905297&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/2/10.1063/1.4905297&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/2/10.1063/1.4905297'
Right1,Right2,Right3,