Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/2/10.1063/1.4905916
1.
1. H. Matsunami, Jpn. J. Appl. Phys., Part 1 43, 6835 (2004).
http://dx.doi.org/10.1143/JJAP.43.6835
2.
2. J. H. Stathis, IBM J. Res. Dev. 46, 265 (2002).
http://dx.doi.org/10.1147/rd.462.0265
3.
3. Y. Nissan-Cohen and T. Gorczyca, IEEE Electron Device Lett. 9, 287 (1988).
http://dx.doi.org/10.1109/55.719
4.
4. P. J. McWhorter and P. S. Winokur, Appl. Phys. Lett. 48, 133 (1986).
http://dx.doi.org/10.1063/1.96974
5.
5. C. Tamura, T. Hayashi, Y. Kikuchi, K. Ohmori, R. Hasunuma, and K. Yamabe, Jpn. J. Appl. Phys., Part 1 48, 05DD03 (2009).
http://dx.doi.org/10.1143/JJAP.48.05DD03
6.
6. M. Lenzlinger and E. H. Snow, J. Appl. Phys. 40, 278 (1969).
http://dx.doi.org/10.1063/1.1657043
7.
7. T. L. Biggerstaff, C. L. Reynolds, T. Zheleva, A. Lelis, D. Habersat, S. Haney, S. H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. 95, 032108 (2009).
http://dx.doi.org/10.1063/1.3144272
8.
8. J. M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 71, 235321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235321
9.
9. B. Hornetz, H. J. Michel, and J. Halbritter, J. Mater. Res. 9, 3088 (1994).
http://dx.doi.org/10.1557/JMR.1994.3088
10.
10. E. I. Oborina, H. N. Benjamin, and A. M. Hoff, J. Appl. Phys. 106, 083703 (2009).
http://dx.doi.org/10.1063/1.3245323
11.
11. K. Y. Cheong, W. Bahng, and N.-K. Kim, Appl. Phys. Lett. 87, 212102 (2005).
http://dx.doi.org/10.1063/1.2130522
12.
12. R. K. Chanana, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin, J. R. Williams, and R. A. Weller, Appl. Phys. Lett. 77, 2560 (2000).
http://dx.doi.org/10.1063/1.1318229
13.
13. A. K. Agarwal, S. Seshadri, and L. B. Rowland, IEEE Electron Device Lett. 18, 592 (1997).
http://dx.doi.org/10.1109/55.644081
14.
14. M. Le-Huu, H. Schmitt, S. Noll, M. Grieb, F. F. Schrey, A. J. Bauer, L. Frey, and H. Ryssel, Microelectron. Reliab. 51, 1346 (2011).
http://dx.doi.org/10.1016/j.microrel.2011.03.015
15.
15. S. K. Gupta, A. Azma, and J. Akhtar, Pramana 76, 165 (2011).
http://dx.doi.org/10.1007/s12043-011-0023-5
16.
16. E. Suzuki, Y. Hayashi, and H. Yanai, J. Appl. Phys. 50, 7001 (1979).
http://dx.doi.org/10.1063/1.325857
17.
17. N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzen, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, Appl. Phys. Lett. 66, 1074 (1995).
http://dx.doi.org/10.1063/1.113576
18.
18. E. H. Nicollian and J. R. Brews, MOS Physics and Technology ( Wiley, New York, 1982).
19.
19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. ( Wiley, New York, 1981).
20.
20. M. P. Houng, Y. H. Wang, and W. J. Chang, J. Appl. Phys. 86, 1488 (1999).
http://dx.doi.org/10.1063/1.370918
21.
21. Y. Takahashi and K. Ohnishi, IEEE Trans. Electron Devices 40, 2006 (1993).
http://dx.doi.org/10.1109/16.239741
22.
22. F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. B 84, 235320 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235320
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/2/10.1063/1.4905916
Loading
/content/aip/journal/jap/117/2/10.1063/1.4905916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/2/10.1063/1.4905916
2015-01-13
2016-09-27

Abstract

The conduction mechanism of the leakage current of a thermally grown oxide on 4H silicon carbide (4H-SiC) was investigated. The dominant carriers of the leakage current were found to be electrons by the carrier-separation current-voltage method. The current-voltage and capacitance-voltage characteristics, which were measured over a wide temperature range, revealed that the leakage current in SiO/4H-SiC on the Si-face can be explained as the sum of the Fowler-Nordheim (FN) tunneling and Poole-Frenkel (PF) emission leakage currents. A rigorous FN analysis provided the barrier height for the SiO/4H-SiC interface. On the basis of Arrhenius plots of the PF current separated from the total leakage current, the existence of carbon-related defects and/or oxygen vacancy defects was suggested in thermally grown SiO films on the Si-face of 4H-SiC.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/2/1.4905916.html;jsessionid=nxuZcpgx-fDasgHg8mNxg3a7.x-aip-live-06?itemId=/content/aip/journal/jap/117/2/10.1063/1.4905916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/2/10.1063/1.4905916&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/2/10.1063/1.4905916'
Right1,Right2,Right3,