Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/2/10.1063/1.4906094
1.
1. A. Bacic, P. Harris, and B. Stone, “ Structure and function of plant cell walls,” in The Biochemistry of Plant ( Academic Press, 1988), Vol. 14, pp. 297371.
2.
2. D. J. Cosgrove, “ Cell walls: Structure, biogenesis, and expansion,” in Plant Physiology, 2nd ed., edited by L. Taiz and E. Zeiger ( Sinauer Associates, Sunderland, MA, 1998).
3.
3. M. J. A. Tijmensen et al., “ Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification,” Biomass Bioenergy 23(2), 129152 (2002).
http://dx.doi.org/10.1016/S0961-9534(02)00037-5
4.
4. M. E. Himmel et al., “ Biomass recalcitrance: Engineering plants and enzymes for biofuels production,” Science 315(5813), 804807 (2007).
http://dx.doi.org/10.1126/science.1137016
5.
5. M. Pauly and K. Keegstra, “ Cell-wall carbohydrates and their modification as a resource for biofuels,” Plant J. 54(4), 559568 (2008).
http://dx.doi.org/10.1111/j.1365-313X.2008.03463.x
6.
6. M. Pauly and K. Keegstra, “ Plant cell wall polymers as precursors for biofuels,” Curr. Opin. Plant Biol. 13(3), 304311 (2010).
http://dx.doi.org/10.1016/j.pbi.2009.12.009
7.
7. M. Milwich et al., “ Biomimetics and technical textiles: Solving engineering problems with the help of nature's wisdom,” Am. J. Bot. 93(10), 14551465 (2006).
http://dx.doi.org/10.3732/ajb.93.10.1455
8.
8. A. S. Deshpande, I. Burgert, and O. Paris, “ Hierarchically structured ceramics by high-precision nanoparticle casting of wood,” Small 2(8–9), 994998 (2006).
http://dx.doi.org/10.1002/smll.200600203
9.
9. P. Fratzl and R. Weinkamer, “ Nature's hierarchical materials,” Prog. Mater. Sci. 52(8), 12631334 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
10.
10. C. M. Lee et al., “ Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16(22), 1084410853 (2014).
http://dx.doi.org/10.1039/c4cp00515e
11.
11. J. A. Lockhart, “ An analysis of irreversible plant cell elongation,” J. Theor. Biol. 8(2), 264275 (1965).
http://dx.doi.org/10.1016/0022-5193(65)90077-9
12.
12. M. McNeil et al., “ Structure and function of the primary cell walls of plants,” Annu. Rev. Biochem. 53, 625663 (1984).
http://dx.doi.org/10.1146/annurev.bi.53.070184.003205
13.
13. D. P. Delmer, “ Cellulose biosynthesis,” Annu. Rev. Plant Physiol. 38(1), 259290 (1987).
http://dx.doi.org/10.1146/annurev.pp.38.060187.001355
14.
14. G. Franz and W. Blaschek, “ Cellulose,” Methods Plant Biochem. 2, 291322 (1990).
http://dx.doi.org/10.1016/B978-0-12-461012-5.50014-8
15.
15. K. H. Gardner and J. Blackwell, “ The structure of native cellulose,” Biopolymers 13(10), 19752001 (1974).
http://dx.doi.org/10.1002/bip.1974.360131005
16.
16. F. J. Kolpak and J. Blackwell, “ Determination of the structure of cellulose II,” Macromolecules 9(2), 273278 (1976).
http://dx.doi.org/10.1021/ma60050a019
17.
17. Y. Nishiyama, “ Structure and properties of the cellulose microfibril,” J. Wood Sci. 55(4), 241249 (2009).
http://dx.doi.org/10.1007/s10086-009-1029-1
18.
18. R. R. Selvendran and M. A. O'Neill, “ Isolation and analysis of cell walls from plant material,” in Methods of Biochemical Analysis ( John Wiley & Sons, Inc., 1987), pp. 25153.
19.
19. N. C. Carpita and D. M. Gibeaut, “ Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth,” Plant J. 3(1), 130 (1993).
http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x
20.
20. S. Morris, S. Hanna, and M. J. Miles, “ The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling,” Nanotechnology 15(9), 1296 (2004).
http://dx.doi.org/10.1088/0957-4484/15/9/031
21.
21. C. T. W. K. Brett, Physiology and Biochemistry of Plant Cell Walls ( Unwin Hyman, London; Boston, 1990).
22.
22. W. Gindl et al., “ Mechanical properties of spruce wood cell walls by nanoindentation,” Appl. Phys. A: Mater. Sci. Process. 79(8), 20692073 (2004).
http://dx.doi.org/10.1007/s00339-004-2864-y
23.
23. L. Zou et al., “ Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers,” Mater. Sci. Eng., C 29(4), 13751379 (2009).
http://dx.doi.org/10.1016/j.msec.2008.11.007
24.
24. W. T. Y. Tze et al., “ Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements,” Composites, Part A 38(3), 945953 (2007).
http://dx.doi.org/10.1016/j.compositesa.2006.06.018
25.
25. Y. Wu et al., “ Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation,” Bioresour. Technol. 101(8), 2867 (2010).
http://dx.doi.org/10.1016/j.biortech.2009.10.074
26.
26. T. Ludwig et al., “ Probing cellular microenvironments and tissue remodeling by atomic force microscopy,” Pflugers Arch. 456(1), 2949 (2008).
http://dx.doi.org/10.1007/s00424-007-0398-9
27.
27. T. G. Kuznetsova et al., “ Atomic force microscopy probing of cell elasticity,” Micron 38(8), 824833 (2007).
http://dx.doi.org/10.1016/j.micron.2007.06.011
28.
28. N. E. Kurland, Z. Drira, and V. K. Yadavalli, “ Measurement of nanomechanical properties of biomolecules using atomic force microscopy,” Micron 43(2–3), 116128 (2012).
http://dx.doi.org/10.1016/j.micron.2011.07.017
29.
29. Z. Zhou et al., “ AFM nanoindentation detection of the elastic modulus of tongue squamous carcinoma cells with different metastatic potentials,” Nanomedicine 9(7), 864874 (2013).
http://dx.doi.org/10.1016/j.nano.2013.04.001
30.
30. A. Zdunek and A. Kurenda, “ Determination of the elastic properties of tomato fruit cells with an atomic force microscope,” Sensors 13(9), 1217512191 (2013).
http://dx.doi.org/10.3390/s130912175
31.
31. E. Lesniewska et al., “ Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy,” Ultramicroscopy 100(3–4), 171178 (2004).
http://dx.doi.org/10.1016/j.ultramic.2003.11.004
32.
32. P. Milani et al., “ In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy,” Plant J. 67(6), 11161123 (2011).
http://dx.doi.org/10.1111/j.1365-313X.2011.04649.x
33.
33. C. M. Hayot et al., “ Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation,” J. Exp. Bot. 63(7), 25252540 (2012).
http://dx.doi.org/10.1093/jxb/err428
34.
34. A. N. Fernandes et al., “ Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: An atomic force microscopy study,” Phys. Rev. E 85(2), 021916 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021916
35.
35. A.-L. Routier-Kierzkowska et al., “ Cellular force microscopy for in vivo measurements of plant tissue mechanics,” Plant Physiol. 158(4), 15141522 (2012).
http://dx.doi.org/10.1104/pp.111.191460
36.
36. E. Forouzesh et al., “ In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling,” Plant J. 73(3), 509520 (2013).
http://dx.doi.org/10.1111/tpj.12042
37.
37. K. Kafle et al., “ Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy,” Cellulose 21(2), 10751086 (2014).
http://dx.doi.org/10.1007/s10570-013-0121-2
38.
38. T. Zhang et al., “ Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis,” Cellulose 21(2), 853862 (2014).
http://dx.doi.org/10.1007/s10570-013-9996-1
39.
39. J. L. Hutter and J. Bechhoefer, “ Calibration of atomic-force microscope tips,” Rev. Sci. Instrum. 64(7), 18681873 (1993).
http://dx.doi.org/10.1063/1.1143970
40.
40. W. F. Heinz and J. H. Hoh, “ Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope,” Trends Biotechnol. 17(4), 143150 (1999).
http://dx.doi.org/10.1016/S0167-7799(99)01304-9
41.
41. C. Grant et al., “ AFM relative stiffness measurement of the plasticising effect of a non-ionic surfactant on plant leaf wax,” J. Colloid Interface Sci. 321(2), 360364 (2008).
http://dx.doi.org/10.1016/j.jcis.2008.02.019
42.
42. R. Jones et al., “ Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment,” Langmuir 18(21), 80458055 (2002).
http://dx.doi.org/10.1021/la0259196
43.
43. S. Kasas et al., “ Biological applications of the AFM: From single molecules to organs,” Int. J. Imag. Syst. Technol. 8(2), 151161 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:2<151::AID-IMA2>3.0.CO;2-9
44.
44. H. Hertz and J. Reine, Agnew. Math. 92, 156 (1891).
45.
45. H. Tavossi and F. Cohen-Tenoudji, “ Ultrasonic investigation of contact surfaces between grains in random granular media. Effect of variable compression,” in Proceedings of International Conference on Ultrasonics 1993, Vienna, pp. 347350.
46.
46. K. L. Johnson, K. Kendall, and A. D. Roberts, “ Surface energy and the contact of elastic solids,” Proc. R. Soc. London, Ser. A 324(1558), 301313 (1971).
http://dx.doi.org/10.1098/rspa.1971.0141
47.
47. X. Shi and Y.-P. Zhao, “ Comparison of various adhesion contact theories and the influence of dimensionless load parameter,” J. Adhes. Sci. Technol. 18(1), pp. 5568 (2004).
http://dx.doi.org/10.1163/156856104322747009
48.
48. D. S. Grierson, E. E. Flater, and R. W. Carpick, “ Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy,” J. Adhes. Sci. Technol. 19(3), 291311 (2005).
http://dx.doi.org/10.1163/1568561054352685
49.
49. D. Maugis, “ Adhesion of spheres: The JKR-DMT transition using a dugdale model,” J. Colloid Interface Sci. 150(1), 243269 (1992).
http://dx.doi.org/10.1016/0021-9797(92)90285-T
50.
50. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “ Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53(2), 314326 (1975).
http://dx.doi.org/10.1016/0021-9797(75)90018-1
51.
51. I. N. Sneddon, “ The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci. 3(1), 4757 (1965).
http://dx.doi.org/10.1016/0020-7225(65)90019-4
52.
52. G. G. Bilodeau, “ Regular pyramid punch problem,” J. Appl. Mech. 59(3), 519523 (1992).
http://dx.doi.org/10.1115/1.2893754
53.
53. C. Wei, P. M. Lintilhac, and J. J. Tanguay, “ An insight into cell elasticity and load-bearing ability. Measurement and theory,” Plant Physiol. 126(3), 11291138 (2001).
http://dx.doi.org/10.1104/pp.126.3.1129
54.
54. A. C. Fischer-Cripps, Nanoindentation, Mechanical Engineering Series ( Springer, New York, 2002).
55.
55. A. T. Mankarios et al., “ Cell wall polysaccharides from onions,” Phytochemistry 19(8), 17311733 (1980).
http://dx.doi.org/10.1016/S0031-9422(00)83803-0
56.
56. D. Plat, N. Ben-Shalom, and A. Levi, “ Changes in pectic substances in carrots during dehydration with and without blanching,” Food Chem. 39(1), 112 (1991).
http://dx.doi.org/10.1016/0308-8146(91)90080-8
57.
57. T. Fujino and T. Itoh, “ Changes in pectin structure during epidermal cell elongation in pea (Pisum sativum) and its implications for cell wall architecture,” Plant Cell Physiol. 39(12), 13151323 (1998).
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029336
58.
58. P. M. A. Toivonen and D. A. Brummell, “ Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables,” Postharvest Biol. Technol. 48(1), 114 (2008).
http://dx.doi.org/10.1016/j.postharvbio.2007.09.004
59.
59. J. Cybulska, A. Zdunek, and K. Konstankiewicz, “ Calcium effect on mechanical properties of model cell walls and apple tissue,” J. Food Eng. 102(3), 217223 (2011).
http://dx.doi.org/10.1016/j.jfoodeng.2010.08.019
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/2/10.1063/1.4906094
Loading
/content/aip/journal/jap/117/2/10.1063/1.4906094
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/2/10.1063/1.4906094
2015-01-14
2016-09-25

Abstract

An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/2/1.4906094.html;jsessionid=z5OYAPrjHk4vJJa4CyF-wbFH.x-aip-live-06?itemId=/content/aip/journal/jap/117/2/10.1063/1.4906094&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/2/10.1063/1.4906094&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/2/10.1063/1.4906094'
Right1,Right2,Right3,