Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/20/10.1063/1.4921445
1.
1. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 28 (2015).
http://dx.doi.org/10.1002/pssr.201409520
2.
2. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, and A. N. Tiwari, IEEE J. Photovoltaics 3, 572 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2226869
3.
3. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nat. Mater. 12, 1107 (2013).
http://dx.doi.org/10.1038/nmat3789
4.
4. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics 19, 894 (2011).
http://dx.doi.org/10.1002/pip.1078
5.
5. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nat. Mater. 10, 857 (2011).
http://dx.doi.org/10.1038/nmat3122
6.
6. F. Pianezzi, Ph.D. dissertation, ETH Zürich, 2014.
7.
7. D.-W. Lee, W.-J. Cho, J.-K. Song, O.-Y. Kwon, W.-H. Lee, C.-H. Park, K.-E. Park, H. Lee, and Y.-N. Kim, “Failure analysis of Cu(In,Ga)Se2 photovoltaic modules: degradation mechanism of Cu(In,Ga)Se2 solar cells under harsh environmental conditions,” Prog. Photovoltaics (published online).
http://dx.doi.org/10.1002/pip.2497
8.
8. T. Minemoto and J. Julayhi, Curr. Appl. Phys. 13, 103 (2013).
http://dx.doi.org/10.1016/j.cap.2012.06.019
9.
9. Y. Kuwahata and T. Minemoto, Renewable Energy 65, 113 (2014).
http://dx.doi.org/10.1016/j.renene.2013.07.038
10.
10. A. E. Delahoy, L. Chen, M. Akhtar, B. Sang, and S. Guo, Sol. Energy 77, 785 (2004).
http://dx.doi.org/10.1016/j.solener.2004.08.012
11.
11. C. P. Thompson, S. Hegedus, P. Carcia, and R. S. McLean, IEEE J. Photovoltaics 3, 494 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2223454
12.
12. J. D. Perkins, T. Gennett, J. E. Leisch, R. Sundaramoorthy, I. L. Repins, M. F. A. M. van Hest, and D. S. Ginley, “ Amorphous transparent conductors for PV applications,” in 2010, 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI ( IEEE, Piscataway, NJ, 2010), pp. 000989000991.
13.
13. T. Gennett, J. D. Perkins, I. L. Repins, R. Sundaramoorthy, and D. S. Ginley, “ The stability and performance of amorphous-InZnO within CIGS devices,” Proc. SPIE 7771, 77710O (2010).
14.
14. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
15.
15. D. Ginley, H. Hosono, and D. C. Paine, Handbook of Transparent Conductors (Springer, 2011).
16.
16. J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, Thin Solid Films 520, 1679 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.07.018
17.
17. H. F. T. Koida and M. Kondo, Jpn. J. Appl. Phys. 46, L685 (2007).
http://dx.doi.org/10.1143/JJAP.46.L685
18.
18. M. P. Taylor, D. W. Readey, M. F. A. M. van Hest, C. W. Teplin, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, J. D. Perkins, and D. S. Ginley, Adv. Funct. Mater. 18, 3169 (2008).
http://dx.doi.org/10.1002/adfm.200700604
19.
19. T. Koida, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, and H. Fujiwara, J. Appl. Phys. 107, 033514 (2010).
http://dx.doi.org/10.1063/1.3284960
20.
20. T. Koida, H. Shibata, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, and H. Fujiwara, J. Appl. Phys. 111, 063721 (2012).
http://dx.doi.org/10.1063/1.3696978
21.
21. S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.045501
22.
22. S. Limpijumnong, P. Reunchan, A. Janotti, and C. Van de Walle, Phys. Rev. B 80, 193202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.193202
23.
23. P. King, R. Lichti, Y. Celebi, J. Gil, R. Vilão, H. Alberto, J. Piroto Duarte, D. Payne, R. Egdell, I. McKenzie, C. McConville, S. Cox, and T. Veal, Phys. Rev. B 80, 081201(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.80.081201
24.
24. T. Koida, H. Sai, and M. Kondo, Thin Solid Films 518, 2930 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.08.060
25.
25. H. Scherg-Kurmes, S. Körner, S. Ring, M. Klaus, L. Korte, F. Ruske, R. Schlatmann, B. Rech, and B. Szyszka, Thin Solid Films (published online).
26.
26. L. Barraud, Z. C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf, and C. Ballif, Sol. Energy Mater. Sol. Cells 115, 151 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.03.024
27.
27. C. Battaglia, L. Erni, M. Boccard, L. Barraud, J. Escarré, K. Söderström, G. Bugnon, A. Billet, L. Ding, M. Despeisse, F.-J. Haug, S. D. Wolf, and C. Ballif, J. Appl. Phys. 109, 114501 (2011).
http://dx.doi.org/10.1063/1.3592885
28.
28. S. K. H. Scherg-Kurmes, F. Ruske, C. Wolf, R. Muydinov, R. Schlatmann, and B. Szyszka, in High Mobility InOx:H Transparent Conductive Oxide for Thin Film Solar Cells, Dresden, Germany (ICCG 10) (2014), p. 381.
29.
29. L. R. Doolittle, Nucl. Instrum. Methods Phys. Res. Sect. B 15, 227 (1986).
http://dx.doi.org/10.1016/0168-583X(86)90291-0
30.
30. D. H. Zhang and H. L. Ma, Appl. Phys. A 62, 487 (1996).
http://dx.doi.org/10.1007/BF01567122
31.
31. M. N. Ruberto and A. Rothwarf, J. Appl. Phys. 61, 4662 (1987).
http://dx.doi.org/10.1063/1.338377
32.
32. U. Rau and H. W. Schock, Appl. Phys. A 69, 131 (1999).
http://dx.doi.org/10.1007/s003390050984
33.
33. M. Igalson and H. W. Schock, J. Appl. Phys. 80, 5765 (1996).
http://dx.doi.org/10.1063/1.363631
34.
34. U. Rau, M. Schmitt, J. Parisi, W. Riedl, and F. Karg, Appl. Phys. Lett. 73, 223 (1998).
http://dx.doi.org/10.1063/1.121762
35.
35. M. Cwil, M. Igalson, P. Zabierowski, and S. Siebentritt, J. Appl. Phys. 103, 063701 (2008).
http://dx.doi.org/10.1063/1.2884708
36.
36. M. Igalson, A. Urbaniak, A. Krysztopa, Y. Aida, R. Caballero, M. Edoff, and S. Siebentritt, Thin Solid Films 519, 7489 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.179
37.
37. F. J. Pern, S. H. Glick, X. Li, C. DeHart, T. Gennett, M. Contreras, and T. Gessert, “ Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures: Part III,” Proc. SPIE 7412, 74120K (2009).
http://dx.doi.org/10.1117/12.826559
38.
38. D. Greiner, S. E. Gledhill, C. Köble, J. Krammer, and R. Klenk, Thin Solid Films 520, 1285 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.04.190
39.
39. T. Jäger, Y. E. Romanyuk, B. Bissig, F. Pianezzi, S. Nishiwaki, P. Reinhard, J. Steinhauser, J. Schwenk, and A. N. Tiwari, “Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes,” J. Appl. Phys. (submitted).
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/20/10.1063/1.4921445
Loading
/content/aip/journal/jap/117/20/10.1063/1.4921445
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/20/10.1063/1.4921445
2015-05-22
2016-09-29

Abstract

High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se (CIGS) solar cells. Hydrogen doping of InO thin films is achieved by injection of HO water vapor or H gas during the sputter process. As-deposited amorphous InO:H films exhibit a high electron mobility of ∼50 cm2/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized HO and H-processed films, although the HO-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage ( ) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the HO case or slightly decrease for H. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (HO) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/20/1.4921445.html;jsessionid=Psuq1u0UsN3oT0INDLCYTIsi.x-aip-live-02?itemId=/content/aip/journal/jap/117/20/10.1063/1.4921445&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/20/10.1063/1.4921445&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/20/10.1063/1.4921445'
Right1,Right2,Right3,