Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/21/10.1063/1.4921810
1.
1. B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
http://dx.doi.org/10.1126/science.287.5458.1658
2.
2. C. von Sonntag, Free-Radical-Induced DNA Damage and its Repair ( Springer, New York, 2005).
3.
3. L. Sanche, in Radiation Induced Molecular Phenomena in Nucleic Acids, edited by M. Shukla and J. Leszczynski ( Springer, Netherlands, 2008), Vol. 5, pp. 531575.
4.
4. S. M. Pimblott and J. A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007).
http://dx.doi.org/10.1016/j.radphyschem.2007.02.012
5.
5. V. Cobut, Y. Frongillo, J. P. Patau, T. Goulet, M.-J. Fraser, and J.-P. Jay-Gerin, Radiat. Phys. Chem. 51, 229 (1998).
http://dx.doi.org/10.1016/S0969-806X(97)00096-0
6.
6. J. A. LaVerne and S. Pimblott, Radiat. Res. 141, 208 (1995).
http://dx.doi.org/10.2307/3579049
7.
7. L. Turi and P. J. Rossky, Chem. Rev. 112, 56415674 (2012).
http://dx.doi.org/10.1021/cr300144z
8.
8. L. Sanche, Nature 461, 358359 (2009).
http://dx.doi.org/10.1038/461358a
9.
9. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
10.
10. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida, IEEE Trans. Nucl. Sci. 53, 270278 (2006).
http://dx.doi.org/10.1109/TNS.2006.869826
11.
11. F. Salvat, J. M. Fernandez-Varea, and J. Sempau, in PENELOPE2011: A Code System for Monte-Carlo Simulation of Electron and Photon Transport, OECD—Nuclear Energy Agency, 2011.
12.
12. C. Champion, C. Le Loirec, and B. Stosic, Int. J. Radiat. Biol. 88, 5461 (2012).
http://dx.doi.org/10.3109/09553002.2011.641451
13.
13. A. Muñoz, F. Blanco, J. C. Oller, J. M. Pérez, and G. García, in Advances in Quantum Chemistry, edited by J. R. Sabin and E. Brändas ( Academic Press, 2007), Vol. 52, pp. 2157.
14.
14. A. Muñoz, M. Fuss, M. A. Cortés-Giraldo, S. Incerti, V. Ivanchenko, A. Ivanchenko, J. M. Quesada, F. Salvat, C. Champion, and G. Gómez-Tejedor, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor and M. C. Fuss ( Springer, Netherlands, 2012), pp. 203225.
15.
15. R. D. White, W. Tattersall, G. Boyle, R. E. Robson, S. Dujko, Z. L. Petrovic, A. Bankovic, M. J. Brunger, J. P. Sullivan, S. J. Buckman, and G. Garcia, Appl. Radiat. Isot. 83(Pt. B), 7785 (2014).
http://dx.doi.org/10.1016/j.apradiso.2013.01.008
16.
16. J. de Urquijo, E. Basurto, A. M. Juarez, K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 141, 014308 (2014).
http://dx.doi.org/10.1063/1.4885357
17.
17. R. D. White, M. J. Brunger, N. A. Garland, R. E. Robson, K. F. Ness, G. Garcia, J. de Urquijo, S. Dujko, and Z. L. Petrović, Eur. Phys. J. D 68, 16 (2014).
http://dx.doi.org/10.1140/epjd/e2014-50085-7
18.
18. S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, C. Villagrasa, and C. Zacharatou, Int. J. Model. Simul. Sci. Comput. 1, 157178 (2010).
http://dx.doi.org/10.1142/S1793962310000122
19.
19. J. Builth-Williams, S. M. Bellm, D. B. Jones, H. Chaluvadi, D. Madison, C. G. Ning, B. Lohmann, and M. J. Brunger, J. Chem. Phys. 136, 024304 (2012).
http://dx.doi.org/10.1063/1.3675167
20.
20. D. B. Jones, S. M. Bellm, F. Blanco, M. Fuss, G. Garcia, P. Limão-Vieira, and M. J. Brunger, J. Chem. Phys. 137, 074304 (2012).
http://dx.doi.org/10.1063/1.4743961
21.
21. D. B. Jones, S. M. Bellm, P. Limão-Vieira, and M. J. Brunger, Chem. Phys. Lett. 535, 3034 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.03.044
22.
22. Z. Masin, J. D. Gorfinkiel, D. B. Jones, S. M. Bellm, and M. J. Brunger, J. Chem. Phys. 136, 144310 (2012).
http://dx.doi.org/10.1063/1.3702629
23.
23. M. Stener, P. Decleva, D. M. P. Holland, and D. A. Shaw, J. Phys. B: At. Mol. Phys. 44, 075203 (2011).
http://dx.doi.org/10.1088/0953-4075/44/7/075203
24.
24. F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia, and P. Limao-Vieira, Phys. Chem. Chem. Phys. 12, 67176731 (2010).
http://dx.doi.org/10.1039/b927412j
25.
25. P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia, F. Blanco, and S. Buckman, Phys. Rev. A 84, 062702 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.062702
26.
26. M. C. Fuss, A. G. Sanz, F. Blanco, J. C. Oller, P. Limão-Vieira, M. J. Brunger, and G. García, Phys. Rev. A 88, 042702 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.042702
27.
27. A. Zecca, L. Chiari, G. Garcia, F. Blanco, E. Trainotti, and M. J. Brunger, J. Phys. B: At. Mol. Phys. 43, 215204 (2010).
http://dx.doi.org/10.1088/0953-4075/43/21/215204
28.
28. J. B. Maljkovic, A. R. Milosavljevic, F. Blanco, D. Sevic, G. Garcia, and B. P. Marinkovic, Phys. Rev. A 79, 052706 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.052706
29.
29. C. G. Ning, K. Liu, Z. H. Luo, S. F. Zhang, and J. K. Deng, Chem. Phys. Lett. 476, 157162 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.031
30.
30. S. H. R. Shojaei, B. Hajgató, and M. S. Deleuze, Chem. Phys. Lett. 498, 4551 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.08.055
31.
31. P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005).
http://dx.doi.org/10.1063/1.1854121
32.
32. M. H. Palmer, I. C. Walker, M. F. Guest, and A. Hopkirk, Chem. Phys. 147, 1933 (1990).
http://dx.doi.org/10.1016/0301-0104(90)85017-Q
33.
33. I. Nenner and G. J. Schulz, J. Chem. Phys. 62, 17471758 (1975).
http://dx.doi.org/10.1063/1.430700
34.
34. D. Almeida, D. Kinzel, F. Ferreira da Silva, B. Puschnigg, D. Gschliesser, P. Scheier, S. Denifl, G. García, L. González, and P. Limão-Vieira, Phys. Chem. Chem. Phys. 15, 1143111440 (2013).
http://dx.doi.org/10.1039/c3cp50548k
35.
35. D. Almeida, F. Ferreira da Silva, G. García, and P. Limão-Vieira, Phys. Rev. Lett. 110, 023201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.023201
36.
36. F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M. C. Fuss, A. G. Sanz, and G. García, Eur. Phys. J. D 67, 199 (2013).
http://dx.doi.org/10.1140/epjd/e2013-40276-1
37.
37. A. G. Sanz, M. C. Fuss, A. Muñoz, F. Blanco, P. Limão-Vieira, M. J. Brunger, S. J. Buckman, and G. García, Int. J. Radiat. Biol. 88, 7176 (2012).
http://dx.doi.org/10.3109/09553002.2011.624151
38.
38. A. Muñoz, J. M. Pérez, G. García, and F. Blanco, Nucl. Instrum. Methods Phys. Res., Sect. A 536, 176188 (2005).
http://dx.doi.org/10.1016/j.nima.2004.07.171
39.
39. A. G. Sanz, M. C. Fuss, F. Blanco, Z. Mašín, J. D. Gorfinkiel, F. Carelli, F. Sebastianelli, F. A. Gianturco, and G. García, Appl. Radiat. Isot. 83(Pt. B), 5767 (2014).
http://dx.doi.org/10.1016/j.apradiso.2013.01.031
40.
40. I. Linert, M. Dampc, B. Mielewska, and M. Zubek, Eur. Phys. J. D 66, 19 (2012).
http://dx.doi.org/10.1140/epjd/e2011-20648-3
41.
41. W. Y. Baek, A. Arndt, M. U. Bug, H. Rabus, and M. Wang, Phys. Rev. A 88, 032702 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.032702
42.
42. J. R. Ferraz, A. S. dos Santos, G. L. C. de Souza, A. I. Zanelato, T. R. M. Alves, M. T. Lee, L. M. Brescansin, R. R. Lucchese, and L. E. Machado, Phys. Rev. A 87, 032717 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.032717
43.
43. W. Wolff, H. Luna, L. Sigaud, A. C. Tavares, and E. C. Montenegro, J. Chem. Phys. 140, 064309 (2014).
http://dx.doi.org/10.1063/1.4864322
44.
44. A. Muñoz, F. Blanco, G. García, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175179 (2008).
http://dx.doi.org/10.1016/j.ijms.2008.04.028
45.
45.CRC Handbook of Chemistry and Physics, edited by D. R. Lide ( CRC Press, Boca Raton, FL, 2005), Internet Version 2005, http://www.hbcpnetbase.com.
46.
46. R. Colmenares, A. G. Sanz, M. C. Fuss, F. Blanco, and G. García, Appl. Radiat. Isot. 83(Pt. B), 9194 (2014).
http://dx.doi.org/10.1016/j.apradiso.2013.01.025
47.
47. T. Field, private communication (2008).
48.
48. M. C. Fuss, A. G. Sanz, F. Blanco, P. Limão-Vieira, M. J. Brunger, and G. García, Eur. Phys. J. D 68, 161 (2014).
http://dx.doi.org/10.1140/epjd/e2014-40820-5
49.
49. R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. M. C. Lourenco, G. Garcia, S. V. Hoffmann, N. J. Mason, P. A. Ribeiro, M. Raposo, and P. Limão-Vieira, Chem. Phys. Lett. 416, 152159 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.073
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/21/10.1063/1.4921810
Loading
/content/aip/journal/jap/117/21/10.1063/1.4921810
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/21/10.1063/1.4921810
2015-06-01
2016-10-01

Abstract

Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/21/1.4921810.html;jsessionid=M-Xps5mhcwJ91JQBnBYLMTsV.x-aip-live-06?itemId=/content/aip/journal/jap/117/21/10.1063/1.4921810&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/21/10.1063/1.4921810&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/21/10.1063/1.4921810'
Right1,Right2,Right3,