Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/21/10.1063/1.4922039
1.
1. A. J. Atkinson, W. A. Colburn, V. G. DeGruttola, D. L. DeMets, G. J. Downing, D. F. Hoth, J. A. Oates, C. C. Peck, R. T. Schooley, B. A. Spilker, J. Woodcock, and S. L. Zeger, Clin. Pharmacol. Ther. 69, 89 (2001).
http://dx.doi.org/10.1067/mcp.2001.113989
2.
2. A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, Anal. Bioanal. Chem. 394, 121 (2009).
http://dx.doi.org/10.1007/s00216-009-2637-8
3.
3. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
http://dx.doi.org/10.1039/c0nr00201a
4.
4. F. Strubbe, F. Beunis, and K. Neyts, Phys. Rev. Lett. 100, 218301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.218301
5.
5. T. Okada, Y. Yamamoto, T. Shibuya, H.-W. Kang, H. Miyachi, I. Karube, H. Muramatsu, and J. M. Kim, Biochem. Eng. J. 41, 17 (2008).
http://dx.doi.org/10.1016/j.bej.2008.03.001
6.
6. R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401 (2013).
http://dx.doi.org/10.1088/0034-4885/76/2/026401
7.
7. A. Huhle, D. Klaue, H. Brutzer, P. Daldrop, S. Joo, O. Otto, U. F. Keyser, and R. Seidel, Nat. Commun. 6, 5885 (2015).
http://dx.doi.org/10.1038/ncomms6885
8.
8. R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, Biophys. J. 80, 2298 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76201-7
9.
9. J. A. van Heiningen and R. J. Hill, Lab Chip 11, 152 (2011).
http://dx.doi.org/10.1039/C005217P
10.
10. I. Semenov, S. Raafatnia, M. Sega, V. Lobaskin, C. Holm, and F. Kremer, Phys. Rev. E 87, 022302 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.022302
11.
11. G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, J. Chem. Phys. 126, 194503 (2007).
http://dx.doi.org/10.1063/1.2734968
12.
12. F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, Phys. Rev. Lett. 108, 016101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.016101
13.
13. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, Biosens. Bioelectron. 24, 2528 (2009).
http://dx.doi.org/10.1016/j.bios.2009.01.009
14.
14. S. Ray, R. T. Steven, F. M. Green, F. Höök, B. Taskinen, V. P. Hytönen, and A. G. Shard, Langmuir 31, 1921 (2015).
http://dx.doi.org/10.1021/la503213f
15.
15. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, Rev. Sci. Instrum. 77, 103101 (2006).
http://dx.doi.org/10.1063/1.2356852
16.
16. I. M. Tolić-Nørrelykke, K. Berg-Sørensen, and H. Flyvbjerg, Comput. Phys. Commun. 159, 225 (2004).
http://dx.doi.org/10.1016/j.cpc.2004.02.012
17.
17. J. A. van Heiningen, A. Mohammadi, and R. J. Hill, Lab Chip 10, 1907 (2010).
http://dx.doi.org/10.1039/c002646h
18.
18. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
http://dx.doi.org/10.1063/1.1645654
19.
19. H. M. Said, in Water Soluble Vitamins, edited by O. E. Stanger ( Springer, 2012), pp. 119.
20.
20. S. Zhu, U. Panne, and K. Rurack, Analyst 138, 2924 (2013).
http://dx.doi.org/10.1039/c3an36578f
21.
21. R. J. Hill, D. A. Saville, and W. B. Russel, J. Colloid Interface Sci. 258, 56 (2003).
http://dx.doi.org/10.1016/S0021-9797(02)00043-7
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4922039 for an expression for the adsorption model (n.d.).[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/21/10.1063/1.4922039
Loading
/content/aip/journal/jap/117/21/10.1063/1.4922039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/21/10.1063/1.4922039
2015-06-04
2016-09-26

Abstract

We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 g/ml) while at concentrations of several g/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/21/1.4922039.html;jsessionid=86rnbAJ6mUsEOE94HQdTK8JF.x-aip-live-03?itemId=/content/aip/journal/jap/117/21/10.1063/1.4922039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/21/10.1063/1.4922039&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/21/10.1063/1.4922039'
Right1,Right2,Right3,