Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/23/10.1063/1.4922785
1.
1. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
http://dx.doi.org/10.1063/1.1763252
2.
2. T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Appl. Phys. Lett. 64, 2894 (1994).
http://dx.doi.org/10.1063/1.111407
3.
3. S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, Appl. Phys. Lett. 86, 233501 (2005).
http://dx.doi.org/10.1063/1.1948521
4.
4. S. Barth, H. Koch, A. Kittel, J. Peinke, J. Burgold, and H. Wurmus, Rev. Sci. Instrum. 76, 075110 (2005).
http://dx.doi.org/10.1063/1.1979467
5.
5. J. Salort, A. Monfardini, and P.-E. Roche, Rev. Sci. Instrum. 83, 125002 (2012).
http://dx.doi.org/10.1063/1.4770119
6.
6. H. J. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001).
http://dx.doi.org/10.1063/1.1418256
7.
7. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
8.
8. R. García and R. Pérez, Surf. Sci. Rep. 47, 197 (2002).
http://dx.doi.org/10.1016/S0167-5729(02)00077-8
9.
9. H.-J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep. 59, 1 (2005).
http://dx.doi.org/10.1016/j.surfrep.2005.08.003
10.
10. R. Garcia and E. T. Herruzo, Nat. Nanotechnol. 7, 217 (2012).
http://dx.doi.org/10.1038/nnano.2012.38
11.
11. G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
http://dx.doi.org/10.1063/1.100061
12.
12. D. Rugar, H. J. Mamin, and P. Guethner, Appl. Phys. Lett. 55, 2588 (1989).
http://dx.doi.org/10.1063/1.101987
13.
13. C. Schonenberger and S. F. Alvarado, Rev. Sci. Instrum. 60, 3131 (1989).
http://dx.doi.org/10.1063/1.1140543
14.
14. P. J. Mulhern, T. Hubbard, C. S. Arnold, B. L. Blackford, and M. H. Jericho, Rev. Sci. Instrum. 62, 1280 (1991).
http://dx.doi.org/10.1063/1.1142485
15.
15. B. W. Hoogenboom, P. L. T. M. Frederix, D. Fotiadis, H. J. Hug, and A. Engel, Nanotechnology 19, 384019 (2008).
http://dx.doi.org/10.1088/0957-4484/19/38/384019
16.
16. P. Paolino, B. Tiribilli, and L. Bellon, J. Appl. Phys. 106, 094313 (2009).
http://dx.doi.org/10.1063/1.3245394
17.
17. G. Jourdan, A. Lambrecht, F. Comin, and J. Chevrier, EPL 85, 31001 (2009).
http://dx.doi.org/10.1209/0295-5075/85/31001
18.
18. J. Laurent, H. Sellier, A. Mosset, S. Huant, and J. Chevrier, Phys. Rev. B 85, 035426 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035426
19.
19. J. Laurent, A. Steinberger, and L. Bellon, Nanotechnology 24, 225504 (2013).
http://dx.doi.org/10.1088/0957-4484/24/22/225504
20.
20. P. Paolino, F. A. Sandoval, and L. Bellon, Rev. Sci. Instrum. 84, 095001 (2013).
http://dx.doi.org/10.1063/1.4819743
21.
21. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).
http://dx.doi.org/10.1063/1.1896938
22.
22. M. G. L. Gustafsson and J. Clarke, J. Appl. Phys. 76, 172 (1994).
http://dx.doi.org/10.1063/1.357124
23.
23. O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, and J. Mlynek, Ultramicroscopy 42–44, 345 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90290-Z
24.
24. M. Allegrini, C. Ascoli, P. Baschieri, F. Dinelli, C. Frediani, A. Lio, and T. Mariani, Ultramicroscopy 42–44(1), 371 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90295-U
25.
25. B. McCarthy, Y. Zhao, R. Grover, and D. Sarid, Appl. Phys. Lett. 86, 111914 (2005).
http://dx.doi.org/10.1063/1.1885178
26.
26. C.-K. Yang, A. Bossche, P. French, H. Sadeghian, J. Goosen, F. van Keulen, K. Gavan, H. van der Zant, and E. van der Drift, IEEE Sens. 2009, 869872.
http://dx.doi.org/10.1109/ICSENS.2009.5398240
27.
27. A. Milner, K. Zhang, V. Garmider, and Y. Prior, Appl. Phys. A 99, 1 (2010).
http://dx.doi.org/10.1007/s00339-010-5601-8
28.
28. X. Chen and X. Wang, J. Phys. Chem. C 115, 22207 (2011).
http://dx.doi.org/10.1021/jp2070979
29.
29. A. Kumar, S. Rajauria, H. Huo, O. Ozsun, K. Rykaczewski, J. Kumar, and K. L. Ekinci, Appl. Phys. Lett. 100, 141607 (2012).
http://dx.doi.org/10.1063/1.3701163
30.
30. D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, J. Appl. Phys. 99, 124904 (2006).
http://dx.doi.org/10.1063/1.2205409
31.
31. D. Kiracofe, K. Kobayashi, A. Labuda, A. Raman, and H. Yamada, Rev. Sci. Instrum. 82, 013702 (2011).
http://dx.doi.org/10.1063/1.3518965
32.
32. B. A. Bircher, L. Duempelmann, H. P. Lang, C. Gerber, and T. Braun, Micro Nano Lett. 8, 770 (2013).
http://dx.doi.org/10.1049/mnl.2013.0352
33.
33. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, Appl. Phys. Lett. 84, 810 (2004).
http://dx.doi.org/10.1063/1.1644924
34.
34. M. A. Green, Solar Energy Mater. Solar Cells 92, 1305 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.06.009
35.
35. R. Sandberg, K. Mølhave, A. Boisen, and W. Svendsen, J. Micromech. Microeng. 15, 2249 (2005).
http://dx.doi.org/10.1088/0960-1317/15/12/006
36.
36. P. Paolino and L. Bellon, Nanotechnology 20, 405705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/40/405705
37.
37. T. Li and L. Bellon, EPL 98, 14004 (2012).
http://dx.doi.org/10.1209/0295-5075/98/14004
38.
38. T. Li, F. A. A. Sandoval, M. Geitner, L. Bellon, G. Cagnoli, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, C. Michel, N. Morgado, and L. Pinard, Phys. Rev. D 89, 092004 (2014).
http://dx.doi.org/10.1103/PhysRevD.89.092004
39.
39. U. Gysin, S. Rast, P. Ruff, E. Meyer, D. W. Lee, P. Vettiger, and C. Gerber, Phys. Rev. B 69, 045403 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045403
40.
40. J. Mertens, E. Finot, T. Thundat, A. Fabre, M.-H. Nadal, V. Eyraud, and E. Bourillot, in Proceedings of the Fourth International Conference on Scanning Probe Microscopy, Sensors and Nanostructures, 2003
40. J. Mertens, E. Finot, T. Thundat, A. Fabre, M.-H. Nadal, V. Eyraud, and E. Bourillot, [Ultramicroscopy 97, 119 (2003)].
http://dx.doi.org/10.1016/S0304-3991(03)00036-6
41.
41. D. Walsh and B. Culshaw, Sens. Actuators, A 27, 711 (1991).
http://dx.doi.org/10.1016/0924-4247(91)87075-E
42.
42. C. Bourgeois, E. Steinsland, N. Blanc, and N. de Rooij, in the Proceedings of IEEE International Frequency Control Symposium (1997), pp. 791799.
43.
43. X. Li, T. Ono, Y. Wang, and M. Esashi, Appl. Phys. Lett. 83, 3081 (2003).
http://dx.doi.org/10.1063/1.1618369
44.
44. M. Hopcroft, W. Nix, and T. Kenny, J. Microelectromech. Syst. 19, 229 (2010).
http://dx.doi.org/10.1109/JMEMS.2009.2039697
45.
45. A. Masolin, P.-O. Bouchard, R. Martini, and M. Bernacki, J. Mater. Sci. 48, 979 (2013).
http://dx.doi.org/10.1007/s10853-012-6713-7
46.
46. H. J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
http://dx.doi.org/10.1088/0957-4484/6/1/001
47.
47. J. E. Sader, J. Appl. Phys. 84, 64 (1998).
http://dx.doi.org/10.1063/1.368002
48.
48. P. R. Saulson, Phys. Rev. D 42, 2437 (1990).
http://dx.doi.org/10.1103/PhysRevD.42.2437
49.
49. C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A1058
50.
50. C. Prakash, Microelectron. Reliab. 18, 333 (1978).
http://dx.doi.org/10.1016/0026-2714(78)90573-5
51.
51. W. Sutherland, Philos. Mag. Ser. 5 36, 507 (1893).
http://dx.doi.org/10.1080/14786449308620508
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/23/10.1063/1.4922785
Loading
/content/aip/journal/jap/117/23/10.1063/1.4922785
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/23/10.1063/1.4922785
2015-06-18
2016-12-07

Abstract

In optical detection setups to measure the deflection of micro-cantilevers, part of the sensing light is absorbed, heating the mechanical probe. We present experimental evidences of a frequency shift of the resonant modes of a cantilever when the light power of the optical measurement set-up is increased. This frequency shift is a signature of the temperature rise and presents a dependence on the mode number. An analytical model is derived to take into account the temperature profile along the cantilever; it shows that the frequency shifts are given by an average of the profile weighted by the local curvature for each resonant mode. We apply this framework to measurements in vacuum and demonstrate that huge temperatures can be reached with moderate light intensities: a 1000 °C with little more than 10 mW. We finally present some insight into the physical phenomena when the cantilever is in air instead of vacuum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/23/1.4922785.html;jsessionid=KGpgXsUpwqx8hjlxeWSNvWDJ.x-aip-live-02?itemId=/content/aip/journal/jap/117/23/10.1063/1.4922785&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/23/10.1063/1.4922785&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/23/10.1063/1.4922785'
Right1,Right2,Right3,