Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “ Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study,” Biophys. J. 77, 30853095 (1999).
2. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “ A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 11451151 (1999).
3. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “ The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767784 (2001).
4. G. Y. H. Lee and C. T. Lim, “ Biomechanics approaches to studying human disease,” Trends Biotechnol. 25, 111118 (2007).
5. A. Ashkin, “ Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
6. A. Ashkin, “ History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE. J. Sel. Top. Quantum Electron. 6, 841 (2000).
7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “ Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
8. P. B. Bareil, Y. Sheng, and A. Chiou, “ Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14, 12503 (2006).
9. K. Ladavac, K. Kasza, and D. G. Grier, “ Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E 70, 010901 (2004).
10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “ Microfluidic sorting in an optical lattice,” Nature 426, 421 (2003).
11. S. J. Hart and A. V. Terray, “ Refractive-index driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83, 5316 (2003).
12. C. G. Hebert, A. Terray, and S. J. Hart, “ Toward label-free optical fractionation of blood-optical force measurements of blood cells,” Anal. Chem. 83, 5666 (2011).
13. S. B. Kim, J. H. Kim, and S. S. Kim, “ Theoretical development of in situ optical particle separator: Cross-type optical chromatography,” Appl. Opt. 45, 6919 (2006).
14. S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “ Cross-type optical particle separation in a microchannel,” Anal. Chem. 80, 2628 (2008).
15. S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “ Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95, 264101 (2009).
16. A. Ashkin, “ Forces of a single-beam gradient laser trap on a dielectric spheres in the ray optics regime,” Biophys. J. 61, 569582 (1992).
17. S. B. Kim and S. S. Kim, “ Radiation forces on spheres in loosely focused Gaussian beam: Ray-optics regime,” J. Opt. Soc. Am. B 23, 897903 (2006).
18. I. Sraj, A. C. Szatmary, D. W. M. Marr, and C. D. Eggleton, “ Dynamic ray tracing for modeling optical cell manipulation,” Opt. Express 18, 16702 (2010).
19. C. B. Chang, W.-X. Huang, and H. J. Sung, “ Lateral migration of an elastic capsule by optical force in a uniform flow,” Phys. Rev. E 86, 066306 (2012).
20. S. B. Kim, H. J. Sung, and S. S. Kim, “ Nondimensional analysis of particle behavior during cross-type optical particle separation,” Appl. Opt. 48, 4291 (2009).
21. C. B. Chang, W.-X. Huang, K. H. Lee, and H. J. Sung, “ Optical separation of ellipsoidal particles in a uniform flow,” Phys. Fluids 26, 062001 (2014).
22. W.-X. Huang, C. B. Chang, and H. J. Sung, “ An improved penalty immersed boundary method for fluid-flexible body interaction,” J. Comput. Phys. 230, 5061 (2011).
23. W.-X. Huang, C. B. Chang, and H. J. Sung, “ Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method,” J. Comput. Phys. 231, 3340 (2012).
24. S. Sato, M. Ishigure, and H. Inaba, “ Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831 (1991).
25. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “ Analysis of the behavior of erythrocytes in and optical trapping system,” Opt. Express 7, 533 (2000).
26. S. H. Simpson and S. Hanna, “ Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430 (2007).
27. S. H. Simpson and S. Hanna, “ Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
28. C. B. Chang, W.-X. Huang, K. H. Lee, and H. J. Sung, “ Optical levitation of a non-spherical particle in a loosely focused Gaussian beam,” Opt. Express 20, 24068 (2012).
29. B. Mihiretie, J.-C. Loudet, and B. Pouligny, “ Optical levitation and long-working-distance trapping: From spherical up to high aspect ratio ellipsoidal particles,” J. Quant. Spectrosc. Radiat. Transfer 126, 61 (2013).
30. I. Sraj, A. C. Szatmary, S. A. Desai, D. W. M. Marr, and C. D. Eggleton, “ Erythrocyte deformation in high-throughput optical stretchers,” Phys. Rev. E 85, 041923 (2012).
31. C. D. Eggleton and A. S. Popel, “ Large deformation of red blood cell ghosts in a simple shear flow,” Phys. Fluids 10, 18341845 (1998).
32. D. Barthès-Biesel, A. Diaz, and E. Dhenin, “ Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation,” J. Fluid Mech. 460, 211222 (2002).
33. R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “ Strain energy function of red blood cell membranes,” Biophys. J. 13, 245264 (1973).
34. C. S. Peskin, “ The immersed boundary method,” Acta Numer. 11, 479 (2002).
35. K. Kim, S.-J. Baek, and H. J. Sung, “ An implicit velocity decoupling procedure for incompressible Navier-Stokes equations,” Int. J. Numer. Methods Fluids 38, 125 (2002).
36. F. Cirak, M. Ortiz, and P. Schroder, “ Subdivision surfaces: A new paradigm for thin-shell finite-element analysis,” Int. J. Numer. Methods. Eng. 47, 2039 (2000).<2039::AID-NME872>3.0.CO;2-1
37. T. Moller and B. Trumbore, “ Fast, minimum storage ray-triangle intersection,” J. Graphics, GPU, Games Tools 2, 21 (1997).
38. R. M. Hochmuth, “ Measuring the mechanical properties of individual human blood cells,” J. Biomech. Eng. 115, 515519 (1993).
39. E. A. Evans, “ Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests,” Biophys. J. 43, 2730 (1983).

Data & Media loading...


Article metrics loading...



The dynamic behavior of an elastic capsule with an initially oblate spheroidal shape during cross-type optical separation was numerically investigated. The penalty immersed boundary method was adopted for the fluid-membrane interaction, and the optical force calculation was conducted by using the ray optics method including the ray-surface intersection algorithm. The oblate elastic capsule of / = 0.5 with different surface Young's moduli and different initial inclination angles was considered. The oblate capsule with higher surface Young's moduli was less deformed, and was more migrated for each initial inclination angle. Unlike the oblate rigid particle, the initially inclined capsules with moderate inclination angles were similarly migrated since the oblate elastic capsule was deformed during rotation near the laser beam axis. The oblate capsules can be separated according to the surface Young's modulus, except for nearly non-inclined capsules. As the fluid velocity decreased, the migration distance increased. The maximum deformation parameter was insensitive to the fluid velocity. Furthermore, a new dimensionless number () was introduced to predict the migration distance of the oblate elastic capsule.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd