Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Pearton, J. Corbett, and T. Shi, Appl. Phys. A 43, 153 (1987).
2. J. I. Hanoka, Hydrogen in Disordered and Amorphous Solids ( Springer, 1986), p. 81.
3. K. Chang and D. Chadi, Phys. Rev. B 40, 11644 (1989).
4. C. G. Van de Walle, Y. Bar-Yam, and S. Pantelides, Phys. Rev. Lett. 60, 2761 (1988).
5. C. G. Van de Walle, P. Denteneer, Y. Bar-Yam, and S. Pantelides, Phys. Rev. B 39, 10791 (1989).
6. P. Landsberg, Proc. Phys. Soc., Sect. A 65, 604 (1952).
7. P. Landsberg, Proc. Phys. Soc., Sect. A 66, 662 (1953).
8. W. Shockley and J. Last, Phys. Rev. 107, 392 (1957).
9. P. Landsberg, Proc. Phys. Soc., Sect. B 70, 282 (1957).
10. L. Kimerling and J. Benton, Physica B+C 116, 297 (1983).
11. H. Conzelmann, K. Graff, and E. Weber, Appl. Phys. A 30, 169 (1983).
12. P. T. Landsberg, Recombination in Semiconductors ( Cambridge University Press, 2003).
13. W. Shockley and W. Read, Jr., Phys. Rev. 87, 835 (1952).
14. R. N. Hall, Phys. Rev. 87, 387 (1952).
15. C.-T. Sah and W. Shockley, Phys. Rev. 109, 1103 (1958).
16. A. Tasch, Jr. and C. Sah, Phys. Rev. B 1, 800 (1970).
17. C.-T. Sah, P. C. H. Chan, C.-K. Wang, R.-Y. Sah, K. Yamakawa, and R. Lutwack, IEEE Trans. Electron Devices 28, 304 (1981).
18. C. Herring, N. Johnson, and C. G. Van de Walle, Phys. Rev. B 64, 125209 (2001).
19. C. G. Van de Walle and J. Neugebauer, Annu. Rev. Mater. Res. 36, 179 (2006).
20. B. J. Hallam, P. G. Hamer, S. R. Wenham, M. D. Abbot, A. Sugianto, A. M. Wenham, C. E. Chan, G. Q. Xu, J. Kariem, J. Degoulange, and R. Einhaus, IEEE J. Photovoltaics 4, 88 (2014).
21. J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).
22. K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).
23. A. Herguth, G. Schubert, M. Kaes, and G. Hahn, “ A new approach to prevent the negative impact of the metastable defect in boron doped cz silicon solar cells,” in Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, 2006 ( IEEE, 2006), p. 940.
24. A. Herguth, G. Schubert, M. Käs, and G. Hahn, Prog. Photovoltaics 16, 135 (2008).
25. G. Krugel, W. Wolke, J. Geilker, S. Rein, and R. Preu, Energy Proc. 8, 47 (2011).
26. B. J. Hallam, S. R. Wenham, P. G. Hamer, M. D. Abbott, A. Sugianto, C. E. Chan, A. M. Wenham, M. G. Eadie, and G. Xu, Energy Proc. 38, 561 (2013).
27. S. Wilking, C. Beckh, S. Ebert, A. Herguth, and G. Hahn, Sol. Energy Mater. Sol. Cells 131, 2 (2014).
28. S. Rein and S. Glunz, Appl. Phys. Lett. 82, 1054 (2003).
29. J. Adey, R. Jones, D. Palmer, P. Briddon, and S. Öberg, Phys. Rev. Lett. 93, 055504 (2004).
30. R. F. Pierret and G. W. Neudeck, Advanced Semiconductor Fundamentals ( Addison-Wesley Reading, MA, 1987), Vol. 6.
31. J. Corbett, S. Sahu, T. Shi, and L. Snyder, Phys. Lett. A 93, 303 (1983).
32. D. Macdonald and L. Geerligs, Appl. Phys. Lett. 85, 4061 (2004).
33. C. Sun, F. E. Rougieux, and D. Macdonald, J. Appl. Phys. 115, 214907 (2014).
34. D. Macdonald, J. Tan, and T. Trupke, J. Appl. Phys. 103, 073710 (2008).
35. L. Geerligs and D. Macdonald, Appl. Phys. Lett. 85, 5227 (2004).
36. K. Mishra, Appl. Phys. Lett. 68, 3281 (1996).
37. J. Schmidt, R. Krain, K. Bothe, G. Pensl, and S. Beljakowa, J. Appl. Phys. 102, 123701 (2007).
38. A. Istratov, H. Hieslmair, and E. Weber, Appl. Phys. A 69, 13 (1999).
39. M. A. Green, J. Appl. Phys. 67, 2944 (1990).
40. D. Yan and A. Cuevas, J. Appl. Phys. 114, 044508 (2013).
41. V. Voronkov, R. Falster, B. Lim, and J. Schmidt, J. Appl. Phys. 112, 113717 (2012).
42. D. Walter, B. Lim, K. Bothe, V. Voronkov, R. Falster, and J. Schmidt, Appl. Phys. Lett. 104, 042111 (2014).
43. B. Lim, “ Boron–oxygen-related recombination centers in crystalline silicon and the effects of dopant-compensation,” Ph.D. thesis, University of Hannover, 2012.
44. S. Wilking, J. Engelhardt, S. Ebert, C. Beckh, A. Herguth, and G. Hahn, “ High speed regeneration of BO-defects: Improving long term solar cell performance within seconds,” in Proceedings of 29th EUPVSEC, Amsterdam 2014, pp. 366372.
45. D. Mathiot, Phys. Rev. B 40, 5867 (1989).
46. P. Hamer, B. Hallam, S. Wenham, and M. Abbott, IEEE J. Photovoltaics 4, 1252 (2014).
47. R. Rizk, P. De Mierry, D. Ballutaud, M. Aucouturier, and D. Mathiot, Phys. Rev. B 44, 6141 (1991).
48. K. McLean, C. Morrow, and D. Macdonald, “ Activation energy for the hydrogenation of iron in p-type crystalline silicon wafers,” in Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, 2006 ( IEEE, 2006), p. 1122.

Data & Media loading...


Article metrics loading...



There are a number of existing models for estimating the charge states of defects in silicon. In order of increasing complexity, these are (a) the Fermi-Dirac distribution, (b) the Shockley-Last model, (c) the Shockley-Read-Hall model, and (d) the Sah-Shockley model. In this work, we demonstrate their consistency with the general occupancy ratio , and show that this parameter can be universally applied to predict the charge states of both monovalent and multivalent deep levels, under either thermal equilibrium or steady-state conditions with carrier injection. The capture cross section ratio is shown to play an important role in determining the charge state under non-equilibrium conditions. The application of the general occupancy ratio is compared with the quasi-Fermi levels, which are sometimes used to predict the charge states in the literature, and the conditions where the latter can be a good approximation are identified. The general approach is then applied to the prediction of the temperature- and injection level-dependent charge states for the technologically important case of multivalent monatomic hydrogen, and several other key monovalent deep levels including Fe, Cr, and the boron-oxygen complex in silicon solar cells. For the case of hydrogen, we adapt the model of Herring , which describes the charge states of hydrogen in thermal equilibrium, and generalize it for non-equilibrium conditions via the inclusion of the general occupancy ratio, while retaining the pre-factors which make the model more complete. Based on these results, the impact of temperature and injection on the hydrogenation of the key monovalent defects, and other pairing reactions, are discussed, demonstrating that the presented model provides a rigorous methodology for understanding the impact of charge states.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd