Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/117/8/10.1063/1.4907536
1.
1. L. Novotny and B. Hecht, Principles of Nano-Optics ( Cambridge University Press, 2012).
2.
2. C. M. Soukoulis and M. Wegener, “ Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523530 (2011).
http://dx.doi.org/10.1038/nphoton.2011.154
3.
3. L. Novotny and N. Van Hulst, “ Antennas for light,” Nat. Photonics 5, 8390 (2011).
http://dx.doi.org/10.1038/nphoton.2010.237
4.
4. A. Alu and N. Engheta, “ Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307310 (2008).
http://dx.doi.org/10.1038/nphoton.2008.53
5.
5. W. Xiong, D. Sikdar, M. Walsh, K. J. Si, Y. Tang, Y. Chen, R. Mazid, M. Weyland, I. D. Rukhlenko, J. Etheridge et al., “ Single-crystal caged gold nanorods with tunable broadband plasmon resonances,” Chem. Commun. 49, 96309632 (2013).
http://dx.doi.org/10.1039/c3cc45506h
6.
6. H. A. Atwater and A. Polman, “ Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205213 (2010).
http://dx.doi.org/10.1038/nmat2629
7.
7. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “ Optimized gold nanoshell ensembles for biomedical applications,” Nanoscale Res. Lett. 8, 142146 (2013).
http://dx.doi.org/10.1186/1556-276X-7-565
8.
8. C. Wang, Z. Jia, K. Zhang, Y. Zhou, R. Fan, X. Xiong, and R. Peng, “ Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
http://dx.doi.org/10.1063/1.4885766
9.
9. S. Lal, S. Link, and N. J. Halas, “ Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641648 (2007).
http://dx.doi.org/10.1038/nphoton.2007.223
10.
10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters ( Springer-Verlag, Berlin, 1995).
11.
11. C. Kumarasinghe, M. Premaratne, and G. P. Agrawal, “ Dielectric function of spherical dome shells with quantum size effects,” Opt. Express 22, 1196611984 (2014).
http://dx.doi.org/10.1364/OE.22.011966
12.
12. A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “ Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
http://dx.doi.org/10.1063/1.4804964
13.
13. Z. Ruan and S. Fan, “ Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.013901
14.
14. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “ Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres,” J. Opt. Soc. Am. B 30, 20662074 (2013).
http://dx.doi.org/10.1364/JOSAB.30.002066
15.
15. A. Alu and N. Engheta, “ Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.233901
16.
16. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “ Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4, 1531 (2013).
http://dx.doi.org/10.1364/BOE.4.000015
17.
17. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “ Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 1617816187 (2014).
http://dx.doi.org/10.1364/OE.22.016178
18.
18. R. Y. Chou, G. Lu, H. Shen, Y. He, Y. Cheng, P. Perriat, M. Martini, O. Tillement, and Q. Gong, “ A hybrid nanoantenna for highly enhanced directional spontaneous emission,” J. Appl. Phys. 115, 244310 (2014).
http://dx.doi.org/10.1063/1.4885422
19.
19. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “ Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres,” Plasmonics 9, 659672 (2014).
http://dx.doi.org/10.1007/s11468-014-9681-8
20.
20. T. Pakizeh and M. Kall, “ Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 23432349 (2009).
http://dx.doi.org/10.1021/nl900786u
21.
21. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “ Resonant optical antennas,” Science 308, 16071609 (2005).
http://dx.doi.org/10.1126/science.1111886
22.
22. R. Zhou, J. Ding, B. Arigong, Y. Lin, and H. Zhang, “ Design of a new broadband monopole optical nano-antenna,” J. Appl. Phys. 114, 184305 (2013).
http://dx.doi.org/10.1063/1.4830031
23.
23. B. Rolly, B. Stout, and N. Bonod, “ Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 2037620386 (2012).
http://dx.doi.org/10.1364/OE.20.020376
24.
24. J. H. Yan, Z. Y. Lin, P. Liu, and G. W. Yang, “ A design of si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication,” J. Appl. Phys. 116, 154307 (2014).
http://dx.doi.org/10.1063/1.4898684
25.
25. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “ Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 54895497 (2012).
http://dx.doi.org/10.1021/nn301398a
26.
26. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. Gonzalez, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “ Electric and magnetic dipolar response of germanium nanospheres: Interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5, 053512 (2011).
http://dx.doi.org/10.1117/1.3603941
27.
27. A. Alu and N. Engheta, “ The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 57235730 (2009).
http://dx.doi.org/10.1364/OE.17.005723
28.
28. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “ All-dielectric optical nanoantennas,” Opt. Express 20, 2059920604 (2012).
http://dx.doi.org/10.1364/OE.20.020599
29.
29. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “ Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
http://dx.doi.org/10.1038/ncomms2538
30.
30. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “ Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi (RRL) 6, 4648 (2012).
http://dx.doi.org/10.1002/pssr.201105475
31.
31. M. Kerker, D. S. Wang, and C. L. Giles, “ Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765767 (1983).
http://dx.doi.org/10.1364/JOSA.73.000765
32.
32. B. Garcia-Camara, F. Moreno, F. Gonzalez, J. M. Saiz, and G. Videen, “ Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25, 327334 (2008).
http://dx.doi.org/10.1364/JOSAA.25.000327
33.
33. A. E. Miroshnichenko, “ Non-Rayleigh limit of the Lorenz-mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.013808
34.
34. J. M. Geffrin, B. Garcia-Camara, R. Gomez-Medina, P. Albella, L. S. Froufe-Perez, C. Eyraud, A. Litman, R. Vaillon, F. Gonzalez, M. Nieto-Vesperinas et al., “ Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
http://dx.doi.org/10.1038/ncomms2167
35.
35. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “ Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045404
36.
36. M. Nieto-Vesperinas, R. Gomez-Medina, and J. Sáenz, “ Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 5460 (2011).
http://dx.doi.org/10.1364/JOSAA.28.000054
37.
37. A. Garcia-Etxarri, R. Gomez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “ Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 48154826 (2011).
http://dx.doi.org/10.1364/OE.19.004815
38.
38. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “ Magnetic light,” Sci. Rep. 2, 492 (2012).
http://dx.doi.org/10.1038/srep00492
39.
39. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “ Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 37493755 (2012).
http://dx.doi.org/10.1021/nl301594s
40.
40. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “ Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 18061809 (2013).
http://dx.doi.org/10.1021/nl4005018
41.
41. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “ Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
http://dx.doi.org/10.1038/ncomms4402
42.
42. H. Chan, A. Demortiere, L. Vukovic, P. Kral, and C. Petit, “ Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling,” ACS Nano 6, 42034213 (2012).
http://dx.doi.org/10.1021/nn3007338
43.
43. E. Massa, S. A. Maier, and V. Giannini, “ An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
http://dx.doi.org/10.1088/1367-2630/15/6/063013
44.
44. I. O. Sosa, C. Noguez, and R. G. Barrera, “ Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107, 62696275 (2003).
http://dx.doi.org/10.1021/jp0274076
45.
45. M. Alsawafta, M. Wahbeh, and V.-V. Truong, “ Simulated optical properties of gold nanocubes and nanobars by discrete dipole approximation,” J. Nanomater. 2012, 283230 (2012).
http://dx.doi.org/10.1155/2012/283230
46.
46. A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, “ Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 25892598 (2013).
http://dx.doi.org/10.1364/JOSAB.30.002589
47.
47. C. H. Papas, Theory of Electromagnetic Wave Propagation ( Courier Dover Publications, 2013).
48.
48. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “ Toroidal dipolar response in a metamaterial,” Science 330, 15101512 (2010).
http://dx.doi.org/10.1126/science.1197172
49.
49. Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “ Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20, 17601768 (2012).
http://dx.doi.org/10.1364/OE.20.001760
50.
50. C. G. Gray, “ Magnetic multipole expansions using the scalar potential,” Am. J. Phys. 47, 457459 (1979).
http://dx.doi.org/10.1119/1.11816
51.
51. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “ Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235429
52.
52. G. Boudarham, R. Abdeddaim, and N. Bonod, “ Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett. 104, 021117 (2014).
http://dx.doi.org/10.1063/1.4861166
53.
53. G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “ Light scattering by agglomerates: Coupled electric and magnetic dipole method,” Langmuir 10, 25332546 (1994).
http://dx.doi.org/10.1021/la00020a009
54.
54. B. T. Draine and P. J. Flatau, “ Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 14911499 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001491
55.
55. P. Gay-Balmaz and O. J. F. Martin, “ A library for computing the filtered and non-filtered 3d green's tensor associated with infinite homogeneous space and surfaces,” Comput. Phys. Commun. 144, 111120 (2002).
http://dx.doi.org/10.1016/S0010-4655(01)00471-4
56.
56. M. A. Yurkin, M. Min, and A. G. Hoekstra, “ Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.036703
57.
57. B. T. Draine and P. J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3, 2013, see http://arxiv.org/abs/1305.6497.
http://aip.metastore.ingenta.com/content/aip/journal/jap/117/8/10.1063/1.4907536
Loading
/content/aip/journal/jap/117/8/10.1063/1.4907536
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/117/8/10.1063/1.4907536
2015-02-24
2016-06-25

Abstract

Cubic dielectric nanoparticles are promising candidates for futuristic low-loss, ultra-compact, nanophotonic applications owing to their larger optical coefficients, greater packing density, and relative ease of fabrication as compared to spherical nanoparticles; besides possessing negligible heating at nanoscale in contrast to their metallic counterparts. Here, we present the first theoretical demonstration of azimuthally symmetric, ultra-directional Kerker's-type scattering of simple dielectric nanocubes in visible and near-infrared regions via simultaneous excitation and interference of optically induced electric- and magnetic-resonances up to quadrupolar modes. Unidirectional forward-scattering by individual nanocubes is observed at the first generalized-Kerker's condition for backward-scattering suppression, having equal electric- and magnetic-dipolar responses. Both directionality and magnitude of these unidirectional-scattering patterns get enhanced where matching electric- and magnetic-quadrupolar responses spectrally overlap. While preserving azimuthal-symmetry and backscattering suppression, a nanocube homodimer provides further directionality improvement for increasing interparticle gap, but with reduced main-lobe magnitude due to emergence of side-scattering lobes from diffraction-grating effect. We thoroughly investigate the influence of interparticle gap on scattering patterns and propose optimal range of gap for minimizing side-scattering lobes. Besides suppressing undesired side-lobes, significant enhancement in scattering magnitude and directionality is attained with increasing number of nanocubes forming a linear chain. Optimal directionality, i.e., the narrowest main-scattering lobe, is found at the wavelength of interfering quadrupolar resonances; whereas the largest main-lobe magnitude is observed at the wavelength satisfying the first Kerker's condition. These unique optical properties of dielectric nanocubes thus can revolutionize their applications at visible and near-infrared regions in the fields of nanoantennas, nanolasers, photovoltaics, and even in biomedicine.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/117/8/1.4907536.html;jsessionid=lI7mCnanV4dJHIwsqrabFXjU.x-aip-live-02?itemId=/content/aip/journal/jap/117/8/10.1063/1.4907536&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/117/8/10.1063/1.4907536&pageURL=http://scitation.aip.org/content/aip/journal/jap/117/8/10.1063/1.4907536'
Right1,Right2,Right3,